
Or as I liked to call it - “Jack Frost nipping at your nose”

by - PurpleTeamTim

W

Table of Contents
Random facts about this years holiday hack:..3
1. Uncover Santa’s Gift List..4
2. Investigate S3 Bucket..6
3. Point-of-Sale Password Recovery...8
4. Operate the Santavator..10
5. Open HID Lock...11
6. Splunk Challenge...13

Question 1...13
Question 2...14
Question 3...14
Question 4...15
Question 5...16
Question 6...16
Question 7...18
Challenge Question...20

7. Solve the Sleigh’s CAN-D-BUS Problem...21
8. Broken Tag Generator..23
9. ARP Shenanigans..25
10. Defeat Fingerprint Sensor..28
11a. Naughty/Nice List with Blockchain Investigation Part 1...30
11b. Naughty/Nice List with Blockchain Investigation Part 1...32
Conclusion...38
Terminal Challenges...40

Shinny Upatree – Kringle Kiosk...40
Pepper Minstix – Unescape Tmux...40
Sugarplum Mary – Linux Primer..41
Fritzy Shortstack – Dialup..42
Bushy Evergreen – Speaker Unprep...43
Minty Candycane – Sort-o-Matic...44
Alabaster Snowball – Scapy prepper..45
Wurnose Openslae – CAN-bus Investigation..47

2 of 48

Random facts about this years holiday hack:

4
Days finished

before the
deadline Too many!!

Hours spent on this years
HH (according to my wife)

2
No. of colleagues
introduced to HH

Four

Days stuck on 11b

Bucket
loads

Tears cried over 11b

Open HID
Lock

This years best challenge

Santavator

This years most fun challenge
(My kids helped solve this one!!)

6
Hours spent

humming “Be Santa”
every day

1. Uncover Santa’s Gift List

An easy start to this year’s Holiday Hack!! Our task is to view the contents of Santa’s
personal gift list, so that we can see what Santa wants to get Josh Wright for Christmas.
Handily, Santa has taken social media to it’s logical conclusion and plastered a photo of
his desk all over a local billboard. Any astute OSINT analyst could enhance the image to
see what it might say:

Through getting a picture of the billboard, we can see Santa’s desk. In amongst some
happy reminders of Holiday Hack past (Gnome in your Home and The Tardis from 2016,
anyone?), we find a picture of Santa’s personal gift list. In a valiant but ultimately futile
attempt at OPSEC, Santa has blurred the giftlist so that casual intruders might not be able
to read his contents. Maybe he should look into using blockchain technology instead?

Figure 1: Use the source, Luke

W

Fortunately, it’s easy to reverse this effect with online tools1 just enough to be able to make
out some words on the gift list:

1 https://www.gifgit.com/image/editor-manager

5 of 48

Figure 2: Twisting my melon man

Figure 3: Zoom and Enhace

https://www.gifgit.com/image/editor-manager

W

Ah, Josh Wright wants a proxmark for Christmas!! Better watch him around the SANS
office next year! Thinking of that, I wonder if there are any uses for it in Kringlecastle?!

Is leaking a gift list a breach of PII regulations?!

Either way, Santa could have easily prevented it by a) not broadcasting a picture of his
desk on social media, or a billboard for that matter or b) if he really had to share a photo of
his desk (doubtful), making sure that any sensitive documents were removed.

2. Investigate S3 Bucket

First off, I have to say, this challenge was buckets of fun!! (#SorryNotSorry).

In this challenge, Shinny Upatree needs us to find and open a missing package from the
Wrapper3000. We’re also told that this technology uses the cloud for storage.
Unfortunately, some people sometimes forget to secure (is that 3 S’s?) their cloud storage
areas properly, so we can use an open source tool2 to see if Santa has fallen into the
same bucket trap. Before doing this though, it’s always best to try and make the wordlist of
buckets specific to the organisation being tested. In this case, we know that the application
is called Wrapper3000, so it’s a good idea to add this to the wordlist. Just to ensure we
don’t miss anything, we add all cases:

We can then run the script to find any buckets whose names are on the wordlist:

2 https://digi.ninja/projects/bucket_finder.php

6 of 48

Figure 4: It's a good idea to have a specific wordlist

https://digi.ninja/projects/bucket_finder.php

W

Success! This finds a bucket whose permissions are public and allow us to pull down the
bucket contents. Shinny Upatree had already explained that there are some packaging
issues with the Wrapper3000, so the package that is downloaded seems to be corrupt and
won’t open easily.

After running file to determine the package file type, we can then examine the file to

identify it as base64. Take a deep breath before reading this next paragraph…

Decoding this base64 reveals a zip file. Unzipping this file reveals a bunzip2 archive.
Decompressing this archive reveals a tar file. Untarring this archive reveals a hex dump.
Reading this hexdump gives us another compressed file. Extracting this file reveals a final
compressed archive. Finally, uncompressing this file reveals a text file, which gives us an
answer:

7 of 48

Figure 5: We're gonna need a bigger bucket

W

The final answer is: North Pole: The Frostiest Place on Earth

This challenge takes hiding in plain sight to a new level!! Of course, Santa should know
that security through obscurity isn’t an effective technique. It would be far more secure to
store the file in an encrypted archive. That is, as long as the password isn’t mentioned in a
YouTube talk, or left lying around by one of the elves, or committed to a git respository…

3. Point-of-Sale Password Recovery
Moving further into Kringle Castle, we find Sugarplum Mary in the Courtyard, who needs to
get access to a Point-of-Sale terminal which has mysteriously had a password applied to
it.

8 of 48

Figure 6: Phew - and I thought Russian dolls were complicated!

W

We are provided with the application for offline inspection by Sugarplum Mary, which we
can download with wget. Turns out that exe files can be extracted using 7zip3, so we use
that approach here:

Once this is done, a simple grep shows us which files may contain passwords:

Now that we know app.asar has a string of password somewhere inside it, we can simply
use strings and grep to look for passwords in that file:

3 https://qtechbabble.wordpress.com/2016/11/07/use-7-zip-to-explore-exe-file-contents/

9 of 48

Figure 7: I thought I'd had enough of extracting files in the previous challenge!

Figure 8: Grep - lets hope this is the last we see of regular expressions in this year's
Holiday Hack

https://qtechbabble.wordpress.com/2016/11/07/use-7-zip-to-explore-exe-file-contents/

W

From this simple grep, line 45 in that file reveals that the password is santapass.

My oh my – after finding passwords in git with trufflehog in years gone by, you’d have
thought the lesson would have been learnt. Storing files in plaintext and easily accessible
binary files is never the answer.

4. Operate the Santavator
I want to start by saying that for me, this was the best challenge in this year’s Holiday
Hack, as it allowed my kids to get involved in the game. Every time they saw me playing
this level, they wanted a go themselves. It was partly with their help that I figured out how
to solve it! So thank you SANS for adding a kid friendly challenge!

To solve this one, you need to find some random objects around Kringle Castle that can
help you redirect the energy stream to ensure that all of the receptors are lit. Although
there are lots of objects to be found, in the end I found that you could light all three
receptors using only three items and the associated colour bulbs:

10 of 48

Figure 9: Storing passwords in plaintext files since at least HH 2017

W

Once all three receptors are lit, it is then possible to choose any floor to visit within Kringle
Castle, except for Santa’s Office, which requires a biometric layer of authentication. More
on this later…

What a nightmare this lift must be for maintenance personnel! Of course, this being
Holiday Hack, I’m assuming that there must be some way to solve this challenge in the
underlying code. As I’d already solved it by manually placing objects, I never bothered with
to figure this out, until getting to objective 10, where it all suddenly becomes clear…

5. Open HID Lock
This was probably my favourite challenge this year, as I love challenges which combine a
physical testing element, similar to last year’s Frosty Keypad and Get Access to the Steam
Tunnels.

To begin with, I didn’t know anything about HID cards, which was then fixed by watching
an excellent YouTube talk4. Armed with the knowledge from this talk, it was clear that the

4 https://www.youtube.com/watch?v=647U85Phxgo

11 of 48

Figure 10: I watched Deviant Ollam's talk on Red Teaming for lifts. Didn't
include this!

https://www.youtube.com/watch?v=647U85Phxgo

W

task was to gain access to a sideroom off the Workshop through surreptitiously cloning
someone else’s card.

Who though, would Santa trust enough to allow access to this room? To answer that
question, it’s first necessary to solve the challenge from Fitzy Shortstack in the kitchen
(see appendix for details). Solving this challenge reveals that Santa really trusts Shinny
Upatree. Maybe even enough to give them access to his sideroom off the workshop.

We can therefore stand near to Shinny and use the kindly provided Proxmark to clone their
card:

This reveals that Shinny’s ID badge has a tag of 2006e22f13. We can then clone this

next to the mysterious door in the workshop to gain access:

This allows access to a mysteriously darkened room with seemingly nothing in it.
Movement seems to be restricted too, only allowing us to move one square in certain
directions. Good job there’s an awesome soundtrack in the background to keep us sane!

Eventually, through trial-and-error, we walk towards the light (literally!) and suddenly find
ourselves as Santa!!

12 of 48

Figure 11: Maybe after all this is over, we should regift the proxmark to Josh
Wright?!

Figure 12: Simulating Shinny's ID badge

W

Being Santa grants us an Access All Areas Kringlecon Black Badge, which allows us to
access challenges that were previously unavailable, including the Splunk terminal in the
Great Hall.

6. Splunk Challenge
As with Holiday Hack 2019, there is a Splunk challenge on this year’s Holiday Hack. I love
these, as it gives blue teamers a nice little challenge to look forward to as well. Once more,
we have the marvellous Alice Bluebird to help us out. I really hope she’s made Lead
Analyst by now!

This year the Splunk Challenge centres around some Purple Teaming activity that the
Kringle Castle SOC have been running. As you might tell by my username, Purple
Teaming is something I’m particularly keen on, so I definitely approve of this challenge!! I
also really appreciate the excellent reference material provided on YouTube5 for anyone
new to Purple Teaming.

Question 1

The first questions eases us in gently, asking how many different MITRE ATT&CK
techniques were used. Alice has named the indexes after the attack they simulate, so it is
easy to query Splunk to find indexes matching the MITRE ATT&CK naming standard,
ignoring any sub-techniques:

5 https://www.youtube.com/watch?v=RxVgEFt08kU

13 of 48

Figure 13: Now that's what I call
a plot twist!!

https://www.youtube.com/watch?v=RxVgEFt08kU

W

This reveals that 13 separate techniques were used.

Question 2

The next question asks for the names of indexes relating to T1059, attackers using
Windows Command Shell6. Again, this can be achieved using simple SPL:

Question 3

The next question gets a little more tricky, asking us for the name of a registry key which is
used to grab a Machine GUID. As a hint, we are told that the MITRE ATT&CK technique
that refers to this registry key is system information discovery. After a bit of research7, we
find that it is T1082.

6 https://attack.mitre.org/techniques/T1059/
7 https://attack.mitre.org/techniques/T1082/

14 of 48

Figure 14: SPL FTW

Figure 15: Windows Command Shell indeed!

https://attack.mitre.org/techniques/T1082/
https://attack.mitre.org/techniques/T1059/

W

We can therefore search this index in Splunk, making an educated guess that any access
to the registry will be logged in the xmlwineventlog sourcetype and searching for events
containing HK to find only registry keys:

This reveals that the script queried the HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\

Cryptography key to find the MachineGUID:

Question 4

Question 4 ramps up the difficulty again, asking us to identify when the first OSTAP event
was recorded. The reason I love Holiday Hack so much is that I learn something new
every year. This year it was what OSTAP is! After some googling in-depth research8, it
turns out to be a downloader script that can be used for gaining or furthering a foothold on
a system.

Once armed with this knowledge, we can craft a simple SPL search to look across all
indexes for anything to do with OSTAP. It is necessary to pipe the base search to
reverse so that we find the first event:

The first OSTAP event was OSTAP Worming Activity, which occurred at 2020-11-
30T17:44:15Z:

8 https://threatresearch.ext.hp.com/deobfuscating-ostap-trickbots-javascript-downloader/

15 of 48

Figure 16: System Information Discovery

Figure 17: Finding a MachineGUID using the registry

Figure 18: SPL to find OSTAP events

https://threatresearch.ext.hp.com/deobfuscating-ostap-trickbots-javascript-downloader/

W

Question 5

This question asks us to find the first use of a particular tool via looking through sysmon
events. In order to find more detail about the tool, we are told it is written by frgnca, who
has a github repo. The only tool in that repo that looks like it might be used for post-
exploitation activities is to do with Audio9, so a logical search would be to look for the word
Audio across Sysmon events. The output is further piped to the table command to make

the results easier to read:

This shows two processes that consist of running audio related commands, both with the
same Process ID, but differing Parent Process IDs:

The correct answer is 3648.

Question 6

Question 6 is perhaps the most difficult (and sneaky) question in this year’s splunk
challenge. We are asked for the final line of a batch file. After searching the indexes for
any mention of batch files, then scratching our heads of how to view the content of said

9 https://github.com/frgnca/AudioDeviceCmdlets

16 of 48

Figure 19: I'll have to worm a joke in here some way or another...

https://github.com/frgnca/AudioDeviceCmdlets

W

batch files, a nudge from MrJ makes me think that the batch file could have been
downloaded onto the system, before being run.

We can see any external downloads with the following query:

This finds a few potential matches, but the most interesting is:

This event captures the download of a batch file from:
https://raw.githubusercontent.com/redcanaryco/atomic-red-team/master/ARTifacts/Misc/
Discovery.bat.

It is then possible to view that batch file in the browser:

17 of 48

Figure 20: Looking for files downloaded by Powershell

Figure 21: Powershell download from github

https://raw.githubusercontent.com/redcanaryco/atomic-red-team/master/ARTifacts/Misc/Discovery.bat
https://raw.githubusercontent.com/redcanaryco/atomic-red-team/master/ARTifacts/Misc/Discovery.bat

W

The answer is therefore: quser

Question 7

The final training question challenge asks us to find the serial number of the domain
controller’s TLS certificate. Alice sets us off by telling us there are a number of bro
sourcetypes and giving us an initial query.

After running this, we see the names of the sourcetypes listed in the search:

18 of 48

Figure 22: Red Canary batch file

W

From this it doesn’t take an uber elf to work out that the x509 data we’re looking for would
be in the bro:x509:json sourcetype, so we refine our query to:

The first event has a subject name of win-dc-748.attackrange.local, which we can make an
educated guess is the name of a domain controller. Therefore we take the serial number
value provided in this event, which turns out to be the correct answer!

19 of 48

Figure 23: Bro sourcetypes

Figure 24: Using the bro sourcetypes

W

Challenge Question

For the Challenge Question, we are provided with the following ciphertext by Alice
Bluebird. Although it’s a bit of a stretch to call it ciphertext, since Alice tells us that the
elves don’t care about RFC 7465, aka Prohibiting the use of RC4 cipher suites10.

The ciphertext has been encoded using Base64, then encrypted using RC4, which we can
make quick work of using CyberChef11. But wait – to decrypt RC4 requires a key!

During an excellent KringleCon talk about Adversary Emulation12, we were told that the
phrase Stay Frosty may come in useful at some point during the game. Indeed, we’ve
noticed several of the elves say it throughout the castle. So we try to decrypt with this
phrase:

10 https://tools.ietf.org/html/rfc7465
11 https://gchq.github.io/CyberChef/
12 https://www.youtube.com/watch?

v=RxVgEFt08kU&list=PLjLd1hNA7YVwqXqaBJfbXqkFb7LKw3r31&index=5

20 of 48

Figure 25: x509 logs in splunk

Figure 26: Stay Frosty!!

https://www.youtube.com/watch?v=RxVgEFt08kU&list=PLjLd1hNA7YVwqXqaBJfbXqkFb7LKw3r31&index=5
https://www.youtube.com/watch?v=RxVgEFt08kU&list=PLjLd1hNA7YVwqXqaBJfbXqkFb7LKw3r31&index=5
https://gchq.github.io/CyberChef/
https://tools.ietf.org/html/rfc7465

W

Ah, the Lollipop Guild. Weren’t they dealt with back in Holiday Hack 2017?!

7. Solve the Sleigh’s CAN-D-BUS Problem
All that’s required to solve this one is a CAN-do attitude (these jokes are getting worse,
aren’t they?). I was really looking forward to attempting this one, as I’ve never played with
the CAN bus before and in a million years wouldn’t be brave enough to play with the one in
my car.

We learn from Wurnose Openslae that there is a problem with the doors and brakes on
Santa’s sleigh that needs fixing. Fresh from completing the CAN-Bus Investigation
terminal, we have some ideas on how to fix this, but are presented with a diagnostic tool
showing the messages flying by on the CAN-D-BUS:

To begin with, the volume of messages is just too much to deal with, so we begin a
process of trial and error to filter messages out and then play with the controls.
Documenting the results leads to this table:

Function Code starts with

21 of 48

Figure 27: CAN-D-BUS analyser

W

Brakes 080

Start / Stop 02A

Lock / Unlock 19B

RPM 244

Steering 019

Accelerator 188

Wurnose told us that the problems were with the brakes and doors, so eliminating all of the
other controls to look at each of those in turn, we see some extra messages that don’t
seem to belong.

No matter what we set the brakes too, there always seems to be two values, one which is
the value that the brakes were set to (16), then one which is a much higher number
(FFFFFFx):

This seems suspicious, so we filter out messages starting with 080 and starting with FF.

Turning to the door lock / unlock mechanism, our earlier analysis showed that these
messages start with 19B. Filtering out all messages so that we only see 19B messages,
then pressing lock / unlock a few times, we observe that:

• Lock seems to be 19B#000000000000

• Unlock seems to be 19B#00000F000000

There is an extra 19B message however that keeps being repeated on the CAN-D-BUS,
that ends F2057:

22 of 48

Figure 28: Putting the brakes on Jack's messages

W

Again this seems suspicious, so we filter this one out also, which allows us to defrost the
sleigh and get Christmas back on track:

8. Broken Tag Generator
From this point on, the challenges in this year’s Holiday Hack seemed to ramp up the
difficulty level. This challenge presents us with a tag generator, where the user can upload
a photo to get a customised tag to include with their presents. Sweet. Except we had a
vague hint from one of the elves about there being issues with the upload functionality, so
that’s something to immediately check out.

Uploading a png or jpeg seems to work, but immediately trying to upload a PHP reverse
shell doesn’t:

23 of 48

Figure 29: Locking Jack out

Figure 30: What happened to "Stay Frosty"?

W

What is interesting about this error message however it is it specifies where the uploaded
file was placed (/tmp) and also gives away the name of the ruby script which processes it
(/app/lib/app.rb).

You can also see through developer tools or Burp that when an image is uploaded, the
application does a GET request to bring that image back to be displayed:

We can infer from this GET request that the id parameter fetches a file to be included in a
page to be displayed by the user. Which may make this application vulnerable to Local File
Inclusion (LFI)13. This can be tested by trying to recover the earlier identified source code:

13 https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-
Input_Validation_Testing/11.1-Testing_for_Local_File_Inclusion

24 of 48

Figure 31: No reverse shell? Denied!

Figure 32: Didn't know whether to INCLUDE this one or not?

Figure 33: Attempting to trigger the LFI

https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/11.1-Testing_for_Local_File_Inclusion
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/11.1-Testing_for_Local_File_Inclusion

W

This doesn’t work, presumably because the application expects the result from the GET
request to be an image. Instead of visiting it in the browser therefore, we can run the same
query through curl, which does allow us to download the secret source:

Now that we know the LFI works, we can try and find interesting files on the filesystem.
The obvious one everyone goes for is /etc/passwd, but in our case, all we’re interested in
is reading some environment variables. The file /proc/self/environ contains the

environment variables for the currently running process, so is a good place to look for the
GREETZ environment variable:

9. ARP Shenanigans
This challenge finds Jack Frost having compromised a host within Kringle Castle and
Alabaster Snowball needing our help to regain access to that machine. From a simple
tcpdump, we can see that the machine Jack has hijacked is making continuous ARP
requests to find 10.6.6.53:

25 of 48

Figure 34: Sinatra? I did it my way

Figure 35: It's all about knowing your environment

W

By using the skills learnt through Scapy Prepper, we can respond to this ARP request and
convince Jack’s machine that we are the machine he’s looking for. We can do this by
editing the ARP script that was provided as part of this challenge to include the following:

The values for IP addresses and MAC addresses were found by running scapy requests to
find those values from the network and incoming requests, then hardcoded into this script.

After running the script to respond to any ARP requests, we see a response go back to
Jack Frost, which is then followed by a DNS request for ftp.osuosl.org:

26 of 48

Figure 36: Hello, is it me you're looking for?

Figure 38: Making a successful ARP response

Figure 37: How to handle an ARP request

ftp://ftp.osuosl.org/

W

Now that we are seeing a DNS request, we can spoof the response to say that we are the
ftp server Jack is looking for. This may enable subsequent attacks that could enable us to
take over the machine.

To edit the DNS, we again use the scripts provided in the /scripts directory, but edit key
portions of the script to properly handle a DNS response (with lots of support and some
“borrowed” code from MrJ!):

Once this is run, we see the FTP request that Jack’s host is making:

Now that we know the filepath, we can make a backdoored version of that .deb file, so that
when Jack Frost installs it, we will receive a reverse shell. To do this, we follow an
excellent guide14 which explains how to do exactly that.

The postinst file we create contains the following, which will open a reverse shell to our
machine once installed:

Then once this reverse shell is obtained, we can examine the contents of the current
directory:

14 http://www.wannescolman.be/?p=98

27 of 48

Figure 39: How to handle DNS

Figure 40: Intercepting FTP requests

Figure 41: Evil debian packages

http://www.wannescolman.be/?p=98
https://twitter.com/januszjasinski

W

Then viewing this file and using grep, we find that Tata Kringle was the one who rescued
herself from the land dispute:

10. Defeat Fingerprint Sensor
Operating the Santavator and getting into Santa’s office is easy enough when you’re santa
and can bypass the fingerprint biometrics. But what if you could only be Santa for a day?
How might you bypass the biometrics when you were feeling yourself again?

28 of 48

Figure 42: It's raining shells!

Figure 43: Never have I so thoroughly read a set of meeting minutes!

Figure 44: Follow the fingerprints

W

Of course, when we’re ourselves, our fingerprints don’t match the big man, so attempting
to use this legitimately doesn’t work.

Looking under the covers though, we can see that the code for this button expects a -
besanta token to be present when this button is pressed:

With a breakpoint set on line 354 of app.js, it is therefore possible to press the button, then
hop over into the developer tools console to examine the status of the tokens array:

At this point, we can simply add a besanta token into the array, then resume execution of
the application:

29 of 48

Figure 45: Surely not just anyone can besanta?

Figure 46: As a token of my appreciation...

Figure 47: Anyone can besanta!

W

Which zooms us off to Santa’s office and an appointment with Tinsel Upatree and some
blockchain wrangling:

11a. Naughty/Nice List with Blockchain Investigation
Part 1
Unfortunately, all of our efforts on bypassing the santavator were for nothing, as the
blockchain sample on Santa’s desk can only be opened by Santa himself. So we go back
through the mysterious dark room again to become Santa, then head back to his office.

For this challenge, we’re told that the chunk of blockchain we are looking at ends in
129996, but we need to know the nonce value for block 130000. We can easily read the
blockchain to get all of the nonce values:

Running this code shows us the nonce values of all the blocks stored in blockchain.dat:

30 of 48

Figure 48: Nice snowglobe!

Figure 49: Does this mean the value of my bitcoin has gone up?

W

We know that this nonce is a 64 bit random number, but from an interesting KringleCon
talk about something called Mersenne Twisters15, we learn that random isn’t always
random.

Using some techniques we learnt having to bypass a quirky snowball game at KringleCon,
let’s have a go at seeing if we can predict the next four values using a very useful Python
library16 which can take a list of 624 random numbers from a common seed, then attempt
to predict the next set of numbers.

Grabbing the list of 624 values and putting them into a file can be easily done on the
command line with ./naughty_nice.py | tail -624 > nonce_data.txt

The library by default expects 32 bit integers, but this can be overriden, as in lines 11 and
14:

When run, this script spits out the next four values, giving us the value for block 130000:

15 https://www.youtube.com/watch?v=Jo5Nlbqd-Vg
16 https://github.com/kmyk/mersenne-twister-predictor

31 of 48

Figure 50: Reading nonce values

Figure 51: If I install a 32 bit version twice, does that get me the
64 bit version?

https://github.com/kmyk/mersenne-twister-predictor
https://www.youtube.com/watch?v=Jo5Nlbqd-Vg

W

11b. Naughty/Nice List with Blockchain Investigation
Part 1
Putting it out there right away – this was this year’s hardest challenge. The one where I
nearly threw the laptop out of the window. The one were I cried myself to sleep on Boxing
Day. The one that I finally solved on New Years Eve!!

We’re told that somehow, Jack Frost has become the nicest person in the whole world,
nice enough that maybe even Mother Teresa would endorse him! It doesn’t seem right, as
his score was negative until only recently. Something is afoot, but with the security of
blockchain, how could this have happened?

To figure it out, we’re given the SHA256 sum of Jack’s altered block
(58a3b9335a6ceb0234c12d35a0564c4ef0e90152d0eb2ce2082383b38028a90f) and
asked if we can reverse whatever changes he has made.

To begin with, let’s look at Jack’s block, which we can achieve with some minor code
modifications to the provided naughty_nice.py script:

This shows us Jack’s block (1010), which shows him with a nice marker and the maximum
score! Something can’t be right:

32 of 48

Figure 52: Nonchalantly solving the challenge

Figure 53: Finding Jack's block

W

Let’s take a look at those attachments, which we can do with the dump_doc function in
the block class. From this we retrieve a PDF evidence file, with some glowing references
from notable figures throughout history:

33 of 48

Figure 54: Nice indeed?!

Figure 55: Hang on, isn't the Tooth Fairy a baddy after last year?

W

Now either Shinny has been on the egg nog, or something isn’t quite right with this PDF!!

A hint given by Tangle Coalbox was:

Shinny Upatree swears that he doesn't remember writing the contents of the
document found in that block. Maybe looking closely at the documents, you
might find something interesting.

– Tangle Coalbox

With that in mind, we analyse the PDF document by opening it in a hexeditor and sure
enough, something doesn’t look quite right:

The hex editor reveals a new Type Catalog in the PDF, with the title _Go_Away/Santa,
which sticks out like a red nose on a reindeer. To change this, we can simply increment the
page count next to the location, changing 2 to 3.

With this though, wouldn’t we be changing the contents of that block, thus changing it’s
MD5 sum? We then remember yet another helpful hint from Tangle Coalbox:

Apparently Jack was able to change just 4 bytes in the block to completely
change everything about it. It's like some sort of evil game to him.
- Tangle Coalbox

Following the link, we find an interesting presentation17 which talks about how to use Hash
Collision attacks in practice. Of particular interest is slide 10918, which I took to calling the
Newton’s Third Law slide. For every byte changed, there is an equal and opposite byte
changed. Or something like that. Essentially, what I took that slide to mean was that if one

17 https://speakerdeck.com/ange/colltris
18 https://speakerdeck.com/ange/colltris?slide=109

34 of 48

Figure 56: Go away Santa?! Who would say such a thing?!

https://speakerdeck.com/ange/colltris?slide=109
https://speakerdeck.com/ange/colltris
https://speakerdeck.com/ange/colltris

W

block gets changed up (ie, 2 to 3), then the byte four rows down has to be changed down.
In our case, this is the byte highlighted in blue below,

After having made those changes, we can re-open the PDF to see if it’s had any effect:

35 of 48

Figure 57: Never byte off more than you can hexedit

Figure 58: Everybody needs good Neighbours

W

That’s more like the Jack Frost we’re familiar with! Although Shinny, never leave leave your
laptop unattended without locking your screen first…

With the PDF recovered to it’s original version, the hint from Tangle Coalbox talked about
four bytes to change, where we’ve only changed two. Reviewing the evidence so far, we
know that Jack has a nice marker on his block, when his actions in Sydney were anything
but. Therefore the next byte to change must be the naughty / nice sign in the block itself.

Which gets us to thinking – changing the PDF directly is all well and good, but if that PDF
is stored on the blockchain, it would need to be changed there. Just like we need to
change the naughty / nice sign there too. So for this next part, we will edit blockchain.dat
directly in a hexeditor.

Before doing this however, we need to understand the current MD5 value of the block, so
that after we’ve made our changes, that MD5 value should remain the same. We can find
the original MD5 value of Jack’s block using the full_hash() function of naughty_nice.py:

With that in mind, we can move on to making the changes in the blockchain itself. If our
understanding is correct, the four changes to make are:

1. Increment the page counter in the PDF type catalog

2. Decrement the value four rows down in the same column

3. Change the nice sign to be naughty (from 1 to 0)

4. Increment the value four rows down in the same column

Making these changes gives us a modified blockchain that looks like this (changes
circled):

36 of 48

Figure 59: Making a bit of a hash of it

W

Now, when we run our modified naughty_nice.py against this script, we see that although
the MD5 hash remains the same, the SHA256 hash has changed - we’ve successfully
performed a hash collision attack!!

With Jack’s changes reversed, all is right with the blockchain and we can proceed to speak
to Santa on the roof, along with Eve Snowshoes and an imprisoned Jack Frost...

37 of 48

Figure 60: In the end, the bark was worse than the byte

Figure 61: Hashing it out

W

Conclusion
I did it!! I actually completed Holiday Hack 2020!!! I’ve done holiday hack for the last
several years and never quite managed to finish it, but 2020 was finally my year!!

In doing so, I had a lot of help along the way from my good old buddy @MrJ, who as
always was very patient and helpful. The KringleCon discord was also a welcome addition
this year and I had a few DMs and nudges from people in there too.

I always like to say thank you to SANS every year for putting on this awesome event. It’s
become one of the things I look forward to most at Christmas, even if it is now one of the
things my wife least looks forward to.

As in previous years, I judge my holiday hack experience by how much I’ve learnt. This
year being no exception, with me learning lots about the following:

• S3 bucket bruteforcing

• Electron apps and how to reverse engineer them

• Proxmark and HID card hacking (I’m definitely adding one of those to next year’s
Christmas list!)

• The CAN bus – although I’m not brave / foolish enough to start playing around with
it on my car!!

38 of 48

Figure 62: The final reckoning

W

• ARP and DNS spoofing – this was an awesome challenge and solidified my
understanding of an attack vector I’ve wanted to get my hands on for years

• Blockchain – upto this point, I was just happy with blockchain as it made me some
money with bitcoin. Now I at least know more of the fundamentals and can
understand other potential uses and how to manipulate it.

Shall we do it all again next year for Four Calling Birds?!

Oh and Jack Frost?

39 of 48

W

Terminal Challenges

Shinny Upatree – Kringle Kiosk
Command injection is no laughing matter you know!! Our Kringle Kiosk does it’s job well,
but if you give it a couple of ampersands and something to bash, it does whatever you tell
it!

Pepper Minstix – Unescape Tmux
Ah, the traditional “escape some antiquated application”. Except this year, the application
isn’t antiquated and actually, it comes in very handy later on in the challenge!

Thankfully, this isn’t as hideously impossible as trying to escape Vi, all we need to do is
find other instances of tmux then attach to them:

40 of 48

Figure 63: Bashed on the head

W

Sugarplum Mary – Linux Primer
This challenge wasn’t difficult, just time consuming! Helping someone to remember lots of
Linux commands is fun, especially if there are lollipops on offer! A complete list of
commands to get all of the lollipops is:

41 of 48

Figure 64: I think Pepper has attachment issues

Figure 65: Mux ado about nothing!

W

Fritzy Shortstack – Dialup
This terminal was infuriating / endearing. Infuriating that at first I spent a good fifteen
minutes listening to the old dial-up sound for nostalgia’s sake, then endearing when I
realised it was all in the code after all…

Each of the “phrases” has a class in the HTML:

Which each have a corresponding event listener in dialup.js:

42 of 48

Figure 66: Only made one mistake on line 20!

Figure 67: My favourite one is baa DEE brrrr

W

From these event listeners, you see that they set the phase variable, but only if you press
the buttons in the correct order. If you get them correct, they build a secret variable, which
in the final step is sent as a GET request to checkpass.php:

From piecing together all of the code logic, we can see that the correct order of buttons is:

baa DEE brrr + aaah + WEWEWEwrwrrwrr + beDURRdunditty + *SCHHHRRHHRTHRTR*

Which builds the secret value of: 39cajd3j2jc329dz4hhddhbvan3djjzz

Bushy Evergreen – Speaker Unprep
The doors in the Speaker Unpreparedness room are locked!! There is an application to
open them though, if only we could somehow find the password, which we can do with
strings:

… snip …

43 of 48

W

Minty Candycane – Sort-o-Matic
Minty has a toy sorting machine that isn’t quite working as it should be. Let’s see if we can
sort it out…

44 of 48

Figure 68: Express yourself

W

Alabaster Snowball – Scapy prepper
Alabaster introduces us to an excellent tool known as Scapy19, which may or may not
come in handy later on in the Holiday Hack. We get asked a lot of questions about Scapy
and how to use it in certain scenarios, the answers to which are:

Submit the class object of the scapy module that sends packets at
layer 3 of the OSI model.
task.submit(send)

Submit the class object of the scapy module that sniffs network
packets and returns those packets in a list.
task.submit(sniff)

Submit the NUMBER only from the choices below that would
successfully send a TCP packet and then return the first sniffed
response packet to be stored in a variable named "pkt":
1. pkt = sr1(IP(dst="127.0.0.1")/TCP(dport=20))
2. pkt = sniff(IP(dst="127.0.0.1")/TCP(dport=20))
3. pkt = sendp(IP(dst="127.0.0.1")/TCP(dport=20))
task.submit(1)

Submit the class object of the scapy module that can read pcap or
pcapng files and return a list of packets.
task.submit(rdpcap)

The variable UDP_PACKETS contains a list of UDP packets. Submit
the NUMBER only from the choices below that correctly prints a
summary of UDP_PACKETS:
1. UDP_PACKETS.print()
2. UDP_PACKETS.show()
3. UDP_PACKETS.list()
task.submit(2)

Submit only the first packet found in UDP_PACKETS.
task.submit(UDP_PACKETS[0])

Submit only the entire TCP layer of the second packet in
TCP_PACKETS.
task.submit(TCP_PACKETS[1][TCP])

Change the source IP address of the first packet found in
UDP_PACKETS to 127.0.0.1 and then submit this modified packet

19 https://scapy.readthedocs.io/en/latest/index.html

45 of 48

https://scapy.readthedocs.io/en/latest/index.html

W

UDP_PACKETS[0].setfieldval('src','127.0.0.1')
task.submit(UDP_PACKETS[0])

Submit the password "task.submit('elf_password')" of the user
alabaster as found in the packet list TCP_PACKETS.
TCP_PACKETS[6].show() && task.submit('echo')

The ICMP_PACKETS variable contains a packet list of several icmp
echo-request and icmp echo-reply packets. Submit only the ICMP
chksum value from the second packet in the ICMP_PACKETS list.
task.submit(ICMP_PACKETS[1][ICMP].chksum)

Submit the number of the choice below that would correctly create
a ICMP echo request packet with a destination IP of 127.0.0.1
stored in the variable named "pkt"
1. pkt = Ether(src='127.0.0.1')/ICMP(type="echo-request")
2. pkt = IP(src='127.0.0.1')/ICMP(type="echo-reply")
3. pkt = IP(dst='127.0.0.1')/ICMP(type="echo-request")
task.submit(3)

Create and then submit a UDP packet with a dport of 5000 and a dst
IP of 127.127.127.127. (all other packet attributes can be
unspecified)
task.submit(IP(dst="127.127.127.127")/UDP(dport=5000))

Create and then submit a UDP packet with a dport of 53, a dst IP
of 127.2.3.4, and is a DNS query with a qname of
"elveslove.santa". (all other packet attributes can be
unspecified)
dns_query =
IP(dst="127.2.3.4")/UDP(dport=53)/DNS(rd=1,qd=DNSQR(qname="elveslo
ve.santa"))
task.submit(dns_query)

The variable ARP_PACKETS contains an ARP request and response
packets. The ARP respons
e (the second packet) has 3 incorrect fields in the ARP layer.
Correct the second pack
et in ARP_PACKETS to be a proper ARP response and then
task.submit(ARP_PACKETS) for in
spection.

ARP_PACKETS[1][ARP].setfieldval('hwdst','00:16:ce:6e:8b:24')

46 of 48

W

ARP_PACKETS[1][ARP].setfieldval('hwsrc','00:13:46:0b:22:ba')
ARP_PACKETS[1][ARP].setfieldval('op',2)
task.submit(ARP_PACKETS)

After answering all of these, we complete the challenge:

Wurnose Openslae – CAN-bus Investigation
Wurnose needs us to tell him the CAN bus code for unlock within a capture of CAN bus
data. Looking at that data, it’s mostly 244 messages, which we can filter out with a simple
grep, to find other messages and the door unlock code, which must be:
19B#00000F000000 at (1608926671.122520):

47 of 48

Figure 69: A hard earned victory!!

W

48 of 48

	Random facts about this years holiday hack:
	1. Uncover Santa’s Gift List
	2. Investigate S3 Bucket
	3. Point-of-Sale Password Recovery
	4. Operate the Santavator
	5. Open HID Lock
	6. Splunk Challenge
	Question 1
	Question 2
	Question 3
	Question 4
	Question 5
	Question 6
	Question 7
	Challenge Question

	7. Solve the Sleigh’s CAN-D-BUS Problem
	8. Broken Tag Generator
	9. ARP Shenanigans
	10. Defeat Fingerprint Sensor
	11a. Naughty/Nice List with Blockchain Investigation Part 1
	11b. Naughty/Nice List with Blockchain Investigation Part 1
	Conclusion
	Terminal Challenges
	Shinny Upatree – Kringle Kiosk
	Pepper Minstix – Unescape Tmux
	Sugarplum Mary – Linux Primer
	Fritzy Shortstack – Dialup
	Bushy Evergreen – Speaker Unprep
	Minty Candycane – Sort-o-Matic
	Alabaster Snowball – Scapy prepper
	Wurnose Openslae – CAN-bus Investigation

